Tuesday 14:00-15:30

Part 4 Examples of imprecise probability in engineering

by Edoardo Patelli

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation

Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

Problem Statement

Mathematical and numerical models

- Adopted to simulate, study and forecast future outcomes
- Models must capture the essentials of the real response.
- Models contain a fairly large set of parameters whose "true" values are not precisely known, i.e. they are uncertain.

Current challenges in Engineering

Uncertainty quantification and management

- Complex systems often must be designed to operate in harsh domains with a wide array of operating conditions
- Quantitative data is either very sparse or prohibitively expensive to collect

Current challenges in Engineering

High-consequence and safety-critical systems

- Risk is often misestimated
- Models are deterministic without incorporating any measure of uncertainty (Columbia accident report)
- Inadequate assessment of uncertainties, unjustified assumptions (NASA-STD-7009)
- Looking for the "black swan" (e.g. Fukushima)

Accident triggered by natural events I

- 02 October 2002 -Golf Mexico
- Hurricane Lili -BP
 Eugene Island 322
 Platform A

Accident triggered by natural events II

- Fukushima Daiichi nuclear disaster (Japan) on 11 March 2011
 - 9.0 MW Tohoku earthquake
 - maximum ground accelerations of 0.56 g (design tolerances of 0.45 g)
 - 15 m tsunami arriving 41 minutes later (design seawall of 5.7 m)

Accident triggered by natural events III

Source: repubblica.it

Amatrice (ITALY), 24 September 2016, (6.0 magnitude)

Accident triggered by natural events IV

Source: tt.com

► Landslide (Matrei, Austria, 14th May, 2013)

Accident caused by poor maintenance

- Southwest B733 near Yuma on Apr 1st 2011
 - Hole in fuselage, sudden decompression
- Viareggio (Italy) on July 1st 2009
 - The failure of an axle on the wagon, derailment and subsequent fire

Unavoidable uncertainties I

Irreducible (aleatory) uncertainties

- Parameters intrinsically uncertain
- Value varies at each experiment
- Future environmental conditions, chaotic and stochastic process

Unavoidable uncertainties II

Reducible (epistemic) uncertainties

- Quantities that could be determined in theory
- Practically they are not measured
- Field properties, simplified model

Unavoidable uncertainties III

"Lack of knowledge" and mixed information

- Statistical information often not available (unique structure)
- Few or missing data (expensive to collect)

Unavoidable uncertainties III

"Lack of knowledge" and mixed information

- Statistical information often not available (unique structure)
- Few or missing data (expensive to collect)
- Qualitative information (expert judgements)
- Heterogeneous information from different sources and in different format

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation

Method of analysis

Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

- Effects of uncertainty need to be included at the design stage
- From "Intuitive analysis" to "Quantitative analysis"

- Effects of uncertainty need to be included at the design stage
- From "Intuitive analysis" to "Quantitative analysis"

- Effects of uncertainty need to be included at the design stage
- From "Intuitive analysis" to "Quantitative analysis"

- Effects of uncertainty need to be included at the design stage
- From "Intuitive analysis" to "Quantitative analysis"

- Effects of uncertainty need to be included at the design stage
- From "Intuitive analysis" to "Quantitative analysis"

Dealing with uncertainty: Requirements

Quantifying

- Modelling and refinement of uncertainty based on experimental data, simulations and/or expert opinion
- Propagation of uncertainties through system models
- Parameter ranking and sensitivity analysis in the presence of uncertainty

Dealing with uncertainty: Requirements

Quantifying

- Modelling and refinement of uncertainty based on experimental data, simulations and/or expert opinion
- Propagation of uncertainties through system models
- Parameter ranking and sensitivity analysis in the presence of uncertainty

Managing

- Identification of the parameters whose uncertainty is the most/least consequential
- Worst-case system performance assessment
- Design in the presence of uncertainty

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

Probability: A real number $\mathbb{P}(A)$ assigned to every event $A \subset \Omega$

Probability: A real number $\mathbb{P}(A)$ assigned to every event $A \subset \Omega$ \mathbb{P} must satisfy some natural properties, called axioms of probability:

1. $\mathbb{P}(A) \geq 0$ (Nonnegativity)

Probability: A real number $\mathbb{P}(A)$ assigned to every event $A \subset \Omega$ \mathbb{P} must satisfy some natural properties, called axioms of probability:

1. $\mathbb{P}(A) \ge 0$ (Nonnegativity) 2. $\mathbb{P}(\Omega) = 1$ (Normalisation)

Probability: A real number $\mathbb{P}(A)$ assigned to every event $A \subset \Omega$ \mathbb{P} must satisfy some natural properties, called axioms of probability:

- 1. $\mathbb{P}(A) \geq 0$ (Nonnegativity)
- 2. $\mathbb{P}(\Omega) = 1$ (Normalisation)
- 3. If $A \cap B = \emptyset$ then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ (Additivity)

Subjective probability Bayesian approach

Combination of rare data and prior expert knowledge

$$\mathbb{P}(\boldsymbol{\theta}|\boldsymbol{x}) = \frac{\mathbb{P}(\boldsymbol{x}|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\boldsymbol{x})} = \frac{\mathbb{P}(\boldsymbol{x}|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\sum_{i=1}^{n}\mathbb{P}(\boldsymbol{x}|\theta_{i})\mathbb{P}(\theta_{i})}$$

- Update of expert knowledge by means of data $\mathbb{P}(\theta|x)$
- Influence of subjective assessment (prior distribution, $\mathbb{P}(\theta)$) decays quickly with increase of sample size

Statistical analysis of imprecise and rare data Open questions?

- Evaluation of remaining subjective uncertainty
- Consideration of imprecision (data and expert knowledge)
- Very small sample size or no data

Statistical analysis of imprecise and rare data Open questions?

- Evaluation of remaining subjective uncertainty
- Consideration of imprecision (data and expert knowledge)
- Very small sample size or no data

Statistical analysis of imprecise and rare data Open questions?

- Evaluation of remaining subjective uncertainty
- Consideration of imprecision (data and expert knowledge)
- Very small sample size or no data

Naive approach

Model epistemic uncertainty as aleatory uncertainty

• Information available as interval only (i.e. bounds) \rightarrow uniform distribution

Naive approach

Model epistemic uncertainty as aleatory uncertainty

- Information available as interval only (i.e. bounds) \rightarrow uniform distribution
- It is a BIG and UNJUSTIFIED (wrong) assumption!
- Give a false sense of confidence

Interval analysis Epistemic Uncertainty

Intervals as epistemic uncertainty of parametric values

Interval analysis

Epistemic Uncertainty

- Intervals as epistemic uncertainty of parametric values
- Uncertainty propagation is an optimization problem

Dempster-Shafer structure

Collection of intervals

 Different probability masses associated to distinct intervals (e.g. weighting expert options or assumptions)

Dempster-Shafer structure

Collection of intervals

- Different probability masses associated to distinct intervals (e.g. weighting expert options or assumptions)
- UQ by sampling intervals (solving an optimization problem for each sample)

Probability box Epistemic + Aleatory uncertainty

References

 S. Ferson, V.Kreinovich, L.Ginzburg, D.S.Myers, & K.Sentz, Constructing probability boxes and Dempster-Shafer structures Sandia National Laboratories, 2003

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

Definition of a random set

Succinct introduction

- Random set Γ is like a random variable whose realizations γ are sets in *F*, not numbers
- ► *F* is a focal set
- $\gamma := \tilde{\Gamma}(\alpha) \in \mathscr{F}$ is a focal element

When all focal elements of \mathscr{F} are singletons, Γ becomes a random variable X

References

- Alvarez, D. A., On the calculation of the bounds of probability of events using infinite random sets, *International Journal of Approximate Reasoning*, Vol. 43, 2006, pp. 241–267.
- Alvarez, D. A., Infinite random sets and applications in uncertainty analysis, Ph.D. thesis, Unit of applied mathematics, University of Innsbruck, 2007
- Alvarez, D. A., A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type, *Fuzzy Sets and Systems*, Vol. 160, 2009, pp. 384–401.

Representation of the uncertainty

Possibility distributions, probability boxes and families of intervals

Using intervals and *d*-dimensional boxes as elements of \mathscr{F} , is enough to model (without making any supposition at all):

- Possibility distributions (also known as normalized fuzzy sets)
- Cumulative distribution functions (CDFs)
- Intervals and families of intervals (Dempster-Shafer structures)
- Distribution-free and distributional probability boxes (p-boxes) and their joint combinations (using Copulas).

Definition

A copula is a multivariate CDF $C : [0, 1]^d \rightarrow [0, 1]$ such that each of its marginal CDFs is uniform on the interval [0, 1].

Relationship between Random Sets, CDFs and finite families of intervals

Figure 1: Focal element of a CDF

Figure 2: Focal element of a family of intervals

 $m(A_5)$

 $m(A_4)$

 $m(A_3)$

 $m(A_2)$

 $m(A_1)$

X

Relationship between Random Sets, p-boxes and fuzzy set

Obtained by generating an α from a uniform distribution on (0, 1]and then, obtaining the corresponding focal element $\gamma = \tilde{\Gamma}(\alpha)$.

Figure 3: Distribution-free probability box

Figure 4: Possibility distribution

Relationship between Random Sets and distributional probability boxes

Distributional p-boxes do not have a graphical representation. Consider a CDF with *m* uncertain and independent parameters, (e.g. intervals I_i for i = 1, 2, ..., m) using the random set representation, a focal element of the probability box can be represented as the input intervals $\{I_i : i = 1, 2, ..., m\}$ together with the sample of α which is a uniform random variable on $(0, 1] \equiv \Omega$. Represented as the random set $\tilde{\Gamma} : \Omega \to \mathscr{F}, \alpha \mapsto \Gamma(\alpha)$ (i.e. $(\mathscr{F}, P_{\Gamma})$) defined on \mathscr{R} where \mathscr{F} is the system of focal

elements $\{\alpha \times I_1 \times \cdots \times I_m : \alpha \in \Omega\}.$

Uncertainty propagation of a random set

Obtained by generating an α from a uniform distribution on (0, 1]and then, obtaining the corresponding focal element $\gamma = \tilde{\Gamma}(\alpha)$.

Figure 5: Distribution-free p-box

Figure 6: A focal set as a *d*-dimensional box $\gamma = \times_{i=1}^{d} \gamma_i$ in X

Focal set

Lower and upper probability measures

The probability measure of a set $\mathscr{F} \in \mathscr{P}(\mathscr{X})$ is bounded

$$LP_{(\mathscr{F},P_{\Gamma})}(F) \leq P(F) \leq UP_{(\mathscr{F},P_{\Gamma})}(F)$$

where,

$$UP_{(\mathscr{F},P_{\Gamma})}(F) = P_{\Gamma} \{ \gamma : \gamma \cap F \neq \emptyset \}$$
$$LP_{(\mathscr{F},P_{\Gamma})}(F) = P_{\Gamma} \{ \gamma : \gamma \subseteq F \}$$

Combination of focal set

Representation either as a *d*-dimensional box in X or as a point in $(0, 1]^d$

Figure 7: A focal set as a *d*-dimensional box $\gamma = \times_{i=1}^{d} \gamma_i$ in X

Figure 8: A focal set as a point $\boldsymbol{\alpha} := [\alpha_1, \alpha_2, \dots, \alpha_n]$ in $(0, 1]^d$

Challenges Computational Aspects

Challenges Computational Aspects

Challenges Computational Aspects

Needs for improved methods for quantifying and managing uncertainty

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

NASA Langley UQ challenge problem

Motivations and Timeline

Aim

- Determine limitations and ranges of applicability of existing UQ methodologies
- Develop new discipline-independent UQ methods
- Advance the state of the practice in UQ problems of direct interest to NASA

Timeline

- ► January 2013: 100+ UQ experts were invited to participate
- January 2014: 11 groups presented at Scitech 2014
- January 2015: Special edition AIAA Journal of Aerospace Information Systems

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

Physical System

NASA Langley Generic Transport Model (GTM)

- 5.5% dynamically scaled, remotely piloted, twin-turbine, research aircraft
- Aircraft motion outside the normal flight envelope
- Dynamics are driven by nonlinearities and coupling, having oscillatory and divergent behaviour

Generic Transport Model (GTM)

Dynamically scaled, highly instrumented, flight test article

Generic Transport Model (GTM) Dynamically scaled, highly instrumented, flight test article

Generic Transport Model (GTM) AIRSTAR, pilot commands

Simulation model

- A high-fidelity aerodynamic mathematical model
- Match closely the dynamics of the test (based on system identification experiments and wind tunnel data

- Specialized aircraft knowledge is not required
- 5 tasks: Uncertainty Characterization, Sensitivity analysis, Uncertainty Quantification, Extreme Case analysis and Robust Design

Black-box model

21 Uncertain Parameters p: loss in control effectiveness, actuator failure, icing, deadzone, and desired range in operating conditions

- 21 Uncertain Parameters p: loss in control effectiveness, actuator failure, icing, deadzone, and desired range in operating conditions
- 5 Intermediate variables x (e.g. control effectiveness of elevator, time delay due telemetry and communications)

- 21 Uncertain Parameters p: loss in control effectiveness, actuator failure, icing, deadzone, and desired range in operating conditions
- 5 Intermediate variables x (e.g. control effectiveness of elevator, time delay due telemetry and communications)
- ► 14 Design variables *d*: controller gains

- 21 Uncertain Parameters p: loss in control effectiveness, actuator failure, icing, deadzone, and desired range in operating conditions
- 5 Intermediate variables x (e.g. control effectiveness of elevator, time delay due telemetry and communications)
- ► 14 Design variables *d*: controller gains
- 8 Performance metrics g (e.g. Lon stability, lat/dir stability, elevator actuation)

Uncertain Parameters (p)

Challenges

Uncertainty models for p are given

- Cat. I Random Variables (aleatory uncertainty)
- Cat. II Intervals (epistemic uncertainty)
- Cat. III Probability boxes (aleatory + epistemic uncertainty)

Some of these Uncertainty Models can be reduced/improved

Uncertain Parameters (p)

Challenges

Uncertainty models for p are given

- Cat. I Random Variables (aleatory uncertainty)
- Cat. II Intervals (epistemic uncertainty)
- Cat. III Probability boxes (aleatory + epistemic uncertainty)

Some of these Uncertainty Models can be reduced/improved

The propagation of p for a fixed d makes g a p-box

Objectives

Tasks

- Uncertainty Characterization Advance methods for the refinement of uncertainty models using limited experimental data
- Sensitivity Analysis Develop methods for the identification of critical parameters from within a multidimensional parameter space
- Uncertainty Propagation Deploy approaches for propagating uncertainties in multidisciplinary systems subject to both aleatory and epistemic uncertainty
- Extreme Case Analysis Identify the combination of uncertainties that lead to best- and worst-case outcomes according to two probabilistic measures of interest
- Robust Design Determine design points that provide optimal worst-case probabilistic performance. This objective is added as an optional element

NASA Langley UQ challenge problem

Proposed strategy

Solving each problem with at least two different approaches

- Cross validate results
- Increase confidence
- Test different hypotheses
- Different numerical implementations

- Theoretical framework: Generalized probabilistic approach (Random Set Theory)
- Computational framework: OpenCossan

Reference

Patelli et al. Uncertainty management in multidisciplinary design of critical safety systems Journal of Aerospace Information Systems, 2014 (DOI:10.2514/1.I010273)

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A)

Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

Uncertainty Characterization Reduce uncertainty

Sub-Model: $x_1 = h_1(p_1, p_2, p_3, p_4, p_5)$

- Refine the uncertainty model of p given n observations of x_1
- > 2 sets of 25 realizations of x_1
- What is the effect of the number of observations n on the quality of the resulting Uncertainty Model?

Uncertainty Characterization

Reduce uncertainty

Variable	Category	Aleatory	Epistemic component	Description
		component	component	
p_1	111	Unimodal Beta	$I_1 = [3/5, 4/5]$	Interval of $E[p_1]$
		(α_1)	$I_2 = [1/50, \ 1/25]$	Interval of $V[p_1]$
<i>p</i> ₂			$I_3 = [0, 1]$	Interval
<i>p</i> 3	I	Uniform(0,1] (α_2)		Random variable
<i>p</i> ₄ , <i>p</i> ₅		Multivariate Gaussian	$I_4 = [-5, 5]$	Interval of $E[p_4]$
		(α_3, α_4)	$I_5 = [1/400, 4]$	Interval of $V[p_4]$
			$I_6 = [-5, 5]$	Interval of $E[p_5]$
			$I_7 = [1/400, \ 4]$	Interval of $V[p_4]$
			$I_8 = [-1, \ 1]$	Interval of $ ho(p_4,p_5)$

4 aleatory terms and 8 epistemic components.

Aim and strategy

Aleatory space, defined as $\Omega = (0, 1]^4$ serves as the support of the copula which models the dependence between variables p_1 , p_3 , p_4 and p_5 .
Aim and strategy

- Refine the uncertainty model of *p* given n observations
- What is the effect of the number of observations n?

defined as $\Theta = X_{i=1}^{8} I_i$; "true" parameter vector θ^* ; when additional information is available, the epistemic uncertainty is reduced.

Strategies

- Bayesian updating on the epistemic space
- Non-parametric statistical methods

Available Data

Observations

- 2 sets of 25 realizations of x_1
- Observations come from stochastic model (aleatory uncertainty)
- eCDF of two data sets are quite different
- Gaussian Smoother approach

Each realization associate to a Gaussian distribution:

$$\hat{F}_h(x) = \frac{1}{n\sigma\sqrt{2\pi}} \sum_{k=1}^n \exp\left(\frac{-(x-x_k)^2}{2\sigma^2}\right)$$

Pradlwarter, H. and Schuëller, G., The Use of Kernel Densities and Confidence Intervals to cope with Insufficient Data in Validation Experiments, *Computer Methods in Applied Mechanics and Engineering*, 197(29-32), 2008, 2550–2560.

Bayesian updating on the epistemic space

The updated belief about θ^* after observing the given dataset \mathcal{D}_n , is modelled by the posterior PDF $p(\theta|\mathcal{D}_n)$:

$$p(\boldsymbol{\theta}|\mathcal{D}_n) = rac{p(\mathcal{D}_n|\boldsymbol{\theta})p(\boldsymbol{\theta})}{P(\mathcal{D}_n)}$$

Likelihood function:

$$p(\mathcal{D}_n|\theta) = \prod_{i=1}^n p(x_i;\theta)$$

is related to the probability of observing the samples $\mathcal{D}_n = \{x_i, i = 1, 2, ..., n\}$ assuming that the true parameters underlying the model PDF $p(x; \theta)$ is θ when a set of independent and identically distributed observations \mathcal{D}_n is available.

Bayesian updating on the epistemic space

Likelihood estimation through kernel density

Assume that the samples \mathcal{D}_n were drawn from $p(\mathbf{x}; \boldsymbol{\theta}^*)$, where $\boldsymbol{\theta}^* \in \Omega$; the likelihood $p(\mathcal{D}_n | \boldsymbol{\theta}_i)$ will be defined in the following way:

- draw M = 100 points from the aleatory space Ω, using copula C; we will call these samples {ω_j : j = 1,..., M};
- calculate $x_1^{(j)} := h_1(\omega_j, \theta_l)$ for $j = 1, \ldots, M$;
- using **kernel density** estimation and the samples $\{x_1^{(j)}: j = 1, ..., M\}$, estimate the PDF $p(\mathbf{x}|\boldsymbol{\theta}_i) \equiv p(\mathbf{x}; \boldsymbol{\theta}_i)$

calculate the likelihood function as

$$p(\mathcal{D}_n|oldsymbol{ heta}_i) = \prod_{k=1}^n p(oldsymbol{x}_k|oldsymbol{ heta}_i)$$

Reduced epistemic space Bayesian updating (25 observations)

Reduced epistemic space Bayesian updating (50 observations)

Reduced epistemic space Bayesian updating

Non parametric approach

- 1. Generate n_i realizations on the epistemic space θ_i
- 2. Evaluate the model $x_1^i := h_1(\alpha_j; \theta_i)$ for $j = 1, \ldots, n_j$;
- 3. Estimate the empirical CDF $\hat{F}(\cdot|\theta_i)$
- 4. Compute Kolmogorov-Smirnov test (measure of similarity D_i)

Non parametric approach

- 1. Generate n_i realizations on the epistemic space θ_i
- 2. Evaluate the model $x_1^i := h_1(\alpha_j; \theta_i)$ for $j = 1, \ldots, n_j$;
- 3. Estimate the empirical CDF $\hat{F}(\cdot|\theta_i)$
- 4. Compute Kolmogorov-Smirnov test (measure of similarity D_i)
- 5. If $D_i < D_{\tilde{v}}$ collect θ_i .

Non parametric approach

- 1. Generate n_i realizations on the epistemic space θ_i
- 2. Evaluate the model $x_1^i := h_1(\alpha_j; \theta_i)$ for $j = 1, \ldots, n_j$;
- 3. Estimate the empirical CDF $\hat{F}(\cdot|\boldsymbol{\theta}_i)$
- 4. Compute Kolmogorov-Smirnov test (measure of similarity D_i)

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

General remarks

Aim

Rank 4 category II & III parameters (x_1, \ldots, x_5) Rank 17 category II & III parameters $(J_1 J_2)$

Two strategies were employed:

- Nonspecificity techniques
- Global Sensitivity Analysis

Nonspecificity techniques

Procedure and definitions

Pinching: $\underline{I_i} + p \cdot (\overline{I_i} - \underline{I_i})$ where $p = \{0.1, 0.3, 0.5, 0.7, 0.9\}$ Nonspecificity: measure of epistemic uncertainty, of the output random set after pinching was estimated

- Klir, G. J. and Wierman, M. J., Uncertainty-Based Information: Elements of Generalized Information Theory, Vol. 15 of Studies in Fuzziness and Soft Computing), Physica-Verlag, Heidelberg, Germany, 1998.
- Klir, G. J., Uncertainty and Information : Foundations of Generalized Information Theory, John Wiley and Sons, New Jersey, 2006.
- Alvarez, D. A., Reduction of uncertainty using sensitivity analysis methods for infinite random sets of indexable type, International Journal of Approximate Reasoning, Vol. 50, No. 5, 2009, pp. 750 – 762.

Nonspecificity approach Some examples

Probability boxes corresponding to the original (dashed lines) and pinched (continuous lines) output probability boxes.

Tools:

- ► 50 samples for each pinching
- ► GA for each focal element (30000 individuals and 10 generations)

0.8

0.9

Sensitivity Analysis Background

Local Sensitivity Analysis

- Obtained varying input factors one at time and holding others fixed to a nominal value Z^{*}_i
- Involve partial derivatives

$$s_{Z_i} = V(Y|Z_i = z_i^*) = \frac{\partial f(\mathbf{Z})}{\partial z_i}|_{Z_i = z_i^*} * \sigma_{z_i}$$

Sensitivity Analysis Background

Global Sensitivity Analysis

- Obtained averaging the local sensitivity analysis over the distribution of uncertain factors, $E(V(Y|Z_i = z_i^*))$
- Variation of the output is taken globally (the supp(Z) is explored)
- Identify "active" input factors at a low computational cost
- Sensitivity measures (Sobol' indexes) can by estimated via Monte Carlo Method

Global sensitivity analysis General remarks

Compute Sobol' indices and Total indices

$$S_i = \frac{Var_{X_i}[E_{X \sim i}(Y \mid x_i)]}{V[Y]} \quad T_i = 1 - \frac{Var_{\mathbf{X}_{\sim i}}(E_{X_i}(Y \mid \mathbf{X}_{\sim i}))}{Var(Y)}$$

Requirements:

- Exact knowledge of PDF
- Variance of a measurable output

Strategy:

- ▶ Redefined model h^* : no p-boxes and a scalar output
- $\delta_i = \int_{-\infty}^{+\infty} |F_i(x) F_{ref}(x)| dx$ (Problem B1)
- extended-FAST method and Saltelli's method

Redefined model for sensitivity analysis

Redefined model for sensitivity analysis

Global Sensitivity Analysis Results tasks B1

extended-FAST approach and Saltelli's method for x_1

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D)

Robust Design (Subproblem E)

Conclusions

Uncertainty Propagation General remarks

Aim

Find the range of the metrics with *reduced* and *improved* models

$$J_1 = E[w(\boldsymbol{p}, \boldsymbol{d}_{\text{baseline}})]$$
 and $J_2 = 1 - P[w(\boldsymbol{p}, \boldsymbol{d}_{\text{baseline}}) < 0]$

Two strategies were employed:

- Approach A: propagate intervals obtained from given distribution-free p-boxes and construct Dempster-Shafer structure
- Approach B: global optimization in the epistemic space (search domain). Monte Carlo Simulation to estimate J₁ and J₂

Uncertainty Quantification Epistemic + Aleatory uncertainty

Double loop approach

- Sampling intervals and reliability analysis for each sample
- Difficult to treat *distribution-free* p-boxes
- Huge computational efforts
- Allows to identify "extreme realizations"

Uncertainty Quantification Propagation of Focal Elements

- \blacktriangleright Sample focal elements in the $\alpha\text{-space}$
- Propagate intervals and construct Dempster-Shafer structure
- Limitation: treats p-boxes as distribution-free p-boxes

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

Extreme Case Analysis

Aim and strategy

Aim

Identify epistemic realizations that yields extreme values of

 $J_1 = E\left[w(\mathbf{p}, \ \mathbf{d}_{baseline})
ight]; \quad J_2 = 1 - P\left[w(\mathbf{p}, \ \mathbf{d}_{baseline}) < 0
ight]$

 Qualitatively describe the relation between sub-disciplines x and failure modes g.

Strategies:

- Identify realizations from Subproblem C Approach B
- Analyses range variability of the performance functions
 g = f(x)

Extreme Case analysis

Identify realizations

Extreme Case analysis

Analysis of the failure modes

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

Robust Design

- Design Variable: 14 control parameters (d)
- ▶ **Objective Function**: minimize $max(J_1)$ (expected value)
- Objective Function: minimize max(J₂) (failure probability)
- Sensitivity analysis of the obtained designs

Computational challenges

- Each candidate solution: ≈ 3 days (i.e. $max(J_1)$, $max(J_2)$)
- Running time: \approx 3 days (for each solution)

Strategies:

- Surrogate model (Artificial Neural Networks)
- Optimizer: Genetic Algorithms (and BOBYQA)

Robust Design Surrogate model (Artificial Neural Networks)

Approximation of the most computationally expensive part

- Inputs: x and d
- Outputs: g

Results:

- max(J₁) = 0.0044
 (baseline 3.05)
- max(J₂) = 0.34
 (baseline 0.41)

Interval/Random Predictor Model Friday 09:00 - 11:00 Part 12

Surrogate model (Artificial Neural Networks) Training

Training data issues

- Positive and negative values of g concentrated around zero
- Few extremely high values

Optimization: Genetic Algorithms Task E1: minimization of $max(J_1)$

 $max(J_1) = 0.0044$ (baseline 3.05)

Optimization: Genetic Algorithms Task E2: minimization of $max(J_2)$

 $max(J_2) = 0.34$ (baseline 0.41)

Examples of imprecise probability in engineering Outline

Uncertainty Management in Engineering

Motivation Method of analysis Limitation of traditional approaches Random Set

The NASA UQ Challenge Problem

The model

Uncertainty Characterization (Subproblem A) Sensitivity Analysis (Subproblem B) Uncertainty Propagation (Subproblem C) Extreme Case Analysis (Subproblem D) Robust Design (Subproblem E)

Conclusions

Uncertainty quantification in Engineering

Generalised Probabilistic method

- Rigorous framework to deal with scarce data, imprecision and vagueness without making any assumption
- Dealing with different representations of uncertainties
- Utilisation of traditional stochastic methods and techniques
- Modelling epistemic uncertainties as aleatory uncertainty might lead to severe over/under estimations
- Provides bounds of the estimations (traditional probabilistic results always included)

Challenges

Still computational intensive analysis
Drawbacks and limitations

Uncertainty Characterization

- Bayesian: $> 10^6$ model evaluations and difficult to implement
- Non-Parametric: very fast and easy to implement

Drawbacks and limitations

Uncertainty Characterization

- Bayesian: $> 10^6$ model evaluations and difficult to implement
- Non-Parametric: very fast and easy to implement

Sensitivity method

- Global sensitivity method: 5×10^5 . (using traditional tools)
- Nonspecificity method: 5×10^7 (required dedicated tools).

Drawbacks and limitations

Uncertainty Characterization

- Bayesian: $> 10^6$ model evaluations and difficult to implement
- Non-Parametric: very fast and easy to implement

Sensitivity method

- Global sensitivity method: 5×10^5 . (using traditional tools)
- Nonspecificity method: 5×10^7 (required dedicated tools).

Uncertainty propagation

► 250×10^6 model evaluations ($N\alpha = 1000$ focal elements + GA with 10000 individuals and 50/55 iterations)

Drawbacks and limitations

Uncertainty Characterization

- Bayesian: $> 10^6$ model evaluations and difficult to implement
- Non-Parametric: very fast and easy to implement

Sensitivity method

- Global sensitivity method: 5×10^5 . (using traditional tools)
- Nonspecificity method: 5×10^7 (required dedicated tools).

Uncertainty propagation

► 250×10^6 model evaluations ($N\alpha = 1000$ focal elements + GA with 10000 individuals and 50/55 iterations)

Robust Design

Requires surrogate model (Friday for further details)

Computationally demanding approach (global optimization)