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Problem Statement
Mathematical and numerical models

I Adopted to simulate, study and forecast future outcomes
I Models must capture the essentials of the real response.
I Models contain a fairly large set of parameters whose “true"

values are not precisely known, i.e. they are uncertain.
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Current challenges in Engineering
Uncertainty quantification and management

I Complex systems often must be designed to operate in harsh
domains with a wide array of operating conditions

I Quantitative data is either very sparse or prohibitively
expensive to collect
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Current challenges in Engineering
High-consequence and safety-critical systems

I Risk is often misestimated
I Models are deterministic without incorporating any measure of

uncertainty (Columbia accident report)
I Inadequate assessment of uncertainties, unjustified

assumptions (NASA-STD-7009)
I Looking for the “black swan” (e.g. Fukushima)
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System failures
Accident triggered by natural events I

I 02 October 2002 -
Golf Mexico

I Hurricane Lili -BP
Eugene Island 322
Platform A
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System failures
Accident triggered by natural events II

I Fukushima Daiichi nuclear disaster (Japan) on 11 March 2011
I 9.0 MW Tohoku earthquake
I maximum ground accelerations of 0.56 g (design tolerances of

0.45 g)
I 15 m tsunami arriving 41 minutes later (design seawall of 5.7

m)
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System failures
Accident triggered by natural events III

Source: repubblica.it

I Amatrice (ITALY), 24 September 2016, (6.0 magnitude)
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System failures
Accident triggered by natural events IV

Source: tt.com

I Landslide (Matrei, Austria, 14th May, 2013)
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System failures
Accident caused by poor maintenance

I Southwest B733 near Yuma on Apr 1st 2011
I Hole in fuselage, sudden decompression

I Viareggio (Italy) on July 1st 2009
I The failure of an axle on the wagon, derailment and

subsequent fire
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Unavoidable uncertainties I
Irreducible (aleatory) uncertainties

I Parameters intrinsically uncertain
I Value varies at each experiment
I Future environmental conditions, chaotic and stochastic

process

118



Unavoidable uncertainties II
Reducible (epistemic) uncertainties

I Quantities that could be determined in theory
I Practically they are not measured
I Field properties, simplified model
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Unavoidable uncertainties III
“Lack of knowledge” and mixed information

I Statistical information often not available (unique structure)
I Few or missing data (expensive to collect)

I Qualitative information (expert judgements)
I Heterogeneous information from different sources and in

different format
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How to deal with uncertainties?

I Effects of uncertainty need to be included at the design stage
I From “Intuitive analysis” to “Quantitative analysis”
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Dealing with uncertainty: Requirements

Quantifying
I Modelling and refinement of uncertainty based on

experimental data, simulations and/or expert opinion
I Propagation of uncertainties through system models
I Parameter ranking and sensitivity analysis in the presence of

uncertainty

Managing
I Identification of the parameters whose uncertainty is the

most/least consequential
I Worst-case system performance assessment
I Design in the presence of uncertainty
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Traditional modelling of uncertainty

Probability: A real number P(A) assigned to every event A ⊂ Ω

P must satisfy some natural properties, called axioms of probability:

1. P(A) ≥ 0 (Nonnegativity)
2. P(Ω) = 1 (Normalisation)
3. If A ∩ B = ∅ then P(A ∪ B) = P(A) + P(B) (Additivity)
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Subjective probability
Bayesian approach

Combination of rare data and prior expert knowledge

P(θ|x) =
P(x |θ)P(θ)

P(x)
=

P(x |θ)P(θ)∑n
i=1 P(x |θi )P(θi )

I Update of expert knowledge by means of data P(θ|x)

I Influence of subjective assessment (prior distribution,P(θ))
decays quickly with increase of sample size
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Statistical analysis of imprecise and rare data
Open questions?

I Evaluation of remaining subjective
uncertainty

I Consideration of imprecision (data and
expert knowledge)

I Very small sample size or no data
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Naive approach
Model epistemic uncertainty as aleatory uncertainty

I Information available as interval only (i.e. bounds)
→ uniform distribution

I It is a BIG and UNJUSTIFIED (wrong) assumption!
I Give a false sense of confidence

C
D
F

Fa
ilu
re Safe

performance
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Interval analysis
Epistemic Uncertainty

I Intervals as epistemic uncertainty of parametric values

I Uncertainty propagation is an optimization problem
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Dempster-Shafer structure
Collection of intervals

I Different probability masses associated to distinct intervals
(e.g. weighting expert options or assumptions)

I UQ by sampling intervals (solving an optimization problem for
each sample)
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Probability box
Epistemic + Aleatory uncertainty

I Distributional
probability box

I Distributional-free
probability box

X
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F
X
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Lower bound F
X

Upper Bound F
X
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References
I S. Ferson, V.Kreinovich, L.Ginzburg, D.S.Myers, & K.Sentz, Constructing

probability boxes and Dempster-Shafer structures Sandia National Laboratories,
2003
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Definition of a random set
Succinct introduction

I Random set Γ is like a random variable whose realizations γ
are sets in F , not numbers

I F is a focal set
I γ := Γ̃(α) ∈ F is a focal element

When all focal elements of F are singletons, Γ becomes a random
variable X
References

I Alvarez, D. A., On the calculation of the bounds of probability of events using
infinite random sets, International Journal of Approximate Reasoning , Vol. 43,
2006, pp. 241–267.

I Alvarez, D. A., Infinite random sets and applications in uncertainty analysis,
Ph.D. thesis, Unit of applied mathematics, University of Innsbruck, 2007

I Alvarez, D. A., A Monte Carlo-based method for the estimation of lower and
upper probabilities of events using infinite random sets of indexable type, Fuzzy
Sets and Systems, Vol. 160, 2009, pp. 384–401.
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Representation of the uncertainty
Possibility distributions, probability boxes and families of intervals

Using intervals and d -dimensional boxes as elements of F , is
enough to model (without making any supposition at all):

I Possibility distributions (also known as normalized fuzzy sets)
I Cumulative distribution functions (CDFs)
I Intervals and families of intervals (Dempster-Shafer structures)
I Distribution-free and distributional probability boxes (p-boxes)

and their joint combinations (using Copulas).

Definition
A copula is a multivariate CDF C : [0, 1]d → [0, 1] such that each
of its marginal CDFs is uniform on the interval [0, 1].
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Relationship between Random Sets, CDFs and finite families
of intervals

Figure 1: Focal element of a CDF
Figure 2: Focal element of a family
of intervals
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Relationship between Random Sets, p-boxes and fuzzy set

Obtained by generating an α from a uniform distribution on (0, 1]
and then, obtaining the corresponding focal element γ = Γ̃(α).

Figure 3: Distribution-free
probability box Figure 4: Possibility distribution
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Relationship between Random Sets and distributional
probability boxes

Distributional p-boxes do not have a graphical representation.
Consider a CDF with m uncertain and independent parameters,
(e.g. intervals Ii for i = 1, 2, . . . ,m) using the random set
representation, a focal element of the probability box can be
represented as the input intervals {Ii : i = 1, 2, . . . ,m} together
with the sample of α which is a uniform random variable on
(0, 1] ≡ Ω.
Represented as the random set Γ̃ : Ω→ F , α 7→ Γ(α)
(i.e. (F ,PΓ)) defined on R where F is the system of focal
elements {α× I1 × · · · × Im : α ∈ Ω}.
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Uncertainty propagation of a random set

Obtained by generating an α from a uniform distribution on (0, 1]
and then, obtaining the corresponding focal element γ = Γ̃(α).

Figure 5: Distribution-free p-box
Figure 6: A focal set as a
d -dimensional box γ = ×d

i=1γi in X
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Focal set
Lower and upper probability measures

The probability measure of a set F ∈P(X ) is bounded

LP(F ,PΓ)(F ) ≤ P(F ) ≤ UP(F ,PΓ)(F )

where,

UP(F ,PΓ)(F ) = PΓ {γ : γ ∩ F 6= ∅}
LP(F ,PΓ)(F ) = PΓ {γ : γ ⊆ F}

reduced epistemic space

aleatory space

epistemic space

realization of the input of the
system for a given α and θ

system

α

θ

0

1

1

Ii

Ij

αi

αj

θ
∗

Ω

Θ

W : Ω×Θ → X G : X → R

H : Ω×Θ → R
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Combination of focal set
Representation either as a d-dimensional box in X or as a point in (0, 1]d

Figure 7: A focal set as a
d -dimensional box γ = ×d

i=1γi in X
Figure 8: A focal set as a point
α := [α1, α2, . . . , αn] in (0, 1]d
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Challenges
Computational Aspects

Needs for improved methods for quantifying and managing
uncertainty
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NASA Langley UQ challenge problem
Motivations and Timeline

Aim
I Determine limitations and ranges of applicability of existing

UQ methodologies
I Develop new discipline-independent UQ methods
I Advance the state of the practice in UQ problems of direct

interest to NASA
Timeline

I January 2013: 100+ UQ experts were invited to participate
I January 2014: 11 groups presented at Scitech 2014
I January 2015: Special edition AIAA Journal of Aerospace

Information Systems
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Physical System
NASA Langley Generic Transport Model (GTM)

I 5.5% dynamically scaled, remotely piloted, twin-turbine,
research aircraft

I Aircraft motion outside the normal flight envelope
I Dynamics are driven by nonlinearities and coupling, having
oscillatory and divergent behaviour
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Generic Transport Model (GTM)
Dynamically scaled, highly instrumented, flight test article

146



Generic Transport Model (GTM)
Dynamically scaled, highly instrumented, flight test article

146



Generic Transport Model (GTM)
AIRSTAR, pilot commands
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The mathematical Model
Simulation model

I A high-fidelity aerodynamic mathematical model
I Match closely the dynamics of the test (based on system

identification experiments and wind tunnel data
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The mathematical Model
Black-box model

I Specialized aircraft knowledge is not required
I 5 tasks: Uncertainty Characterization, Sensitivity analysis,

Uncertainty Quantification, Extreme Case analysis and Robust
Design
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The mathematical Model
Black-box model

I 21 Uncertain Parameters p: loss in control effectiveness,
actuator failure, icing, deadzone, and desired range in
operating conditions

I 5 Intermediate variables x (e.g. control effectiveness of
elevator, time delay due telemetry and communications)

I 14 Design variables d : controller gains
I 8 Performance metrics g (e.g. Lon stability, lat/dir stability,

elevator actuation)

x = h(p) g = f (p, x)
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Uncertain Parameters (p)
Challenges

Uncertainty models for p are given
Cat. I Random Variables (aleatory uncertainty)
Cat. II Intervals (epistemic uncertainty)
Cat. III Probability boxes (aleatory + epistemic uncertainty)

Some of these Uncertainty Models can be reduced/improved

The propagation of p for a fixed d makes g a p-box
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Objectives
Tasks

I Uncertainty Characterization Advance methods for the
refinement of uncertainty models using limited experimental data

I Sensitivity Analysis Develop methods for the identification of
critical parameters from within a multidimensional parameter space

I Uncertainty Propagation Deploy approaches for propagating
uncertainties in multidisciplinary systems subject to both aleatory
and epistemic uncertainty

I Extreme Case Analysis Identify the combination of
uncertainties that lead to best- and worst-case outcomes according
to two probabilistic measures of interest

I Robust Design Determine design points that provide optimal
worst-case probabilistic performance. This objective is added as an
optional element
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NASA Langley UQ challenge problem
Proposed strategy

Solving each problem with at least two different approaches

I Cross validate results
I Increase confidence
I Test different hypotheses
I Different numerical implementations

I Theoretical framework: Generalized probabilistic approach
(Random Set Theory)

I Computational framework: OpenCossan

Reference
Patelli et al. Uncertainty management in multidisciplinary design of critical
safety systems Journal of Aerospace Information Systems, 2014
(DOI:10.2514/1.I010273)
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Uncertainty Characterization
Reduce uncertainty

Sub-Model: x1 = h1(p1, p2, p3, p4, p5)

I Refine the uncertainty model of p given n observations of x1
I 2 sets of 25 realizations of x1
I What is the effect of the number of observations n on the

quality of the resulting Uncertainty Model?
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Uncertainty Characterization
Reduce uncertainty

Variable Category Aleatory Epistemic Description
component component

p1 III Unimodal Beta I1 = [3/5, 4/5] Interval of E [p1]
(α1) I2 = [1/50, 1/25] Interval of V [p1]

p2 II I3 = [0, 1] Interval
p3 I Uniform(0,1] (α2) Random variable

p4, p5 III Multivariate Gaussian I4 = [−5, 5] Interval of E [p4]
(α3,α4) I5 = [1/400, 4] Interval of V [p4]

I6 = [−5, 5] Interval of E [p5]
I7 = [1/400, 4] Interval of V [p4]
I8 = [−1, 1] Interval of ρ(p4, p5)

4 aleatory terms and 8 epistemic components.
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Aim and strategy

0
0

1

1
Ii

Ij

epistemic space Θaleatory space Ω

α

αi

αj

θ
∗

reduced original
epistemicepistemic
spacespace

Aleatory space, defined as Ω = (0, 1]4 serves as the support of the
copula which models the dependence between variables p1, p3, p4
and p5.
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Uncertainty Characterization
Aim and strategy

I Refine the uncertainty model of p given n observations
I What is the effect of the number of observations n?

0
0

1

1
Ii

Ij

epistemic space Θaleatory space Ω

α

αi

αj

θ
∗

reduced original
epistemicepistemic
spacespace

defined as Θ =×8
i=1 Ii ; “true” parameter vector θ∗; when

additional information is available, the epistemic uncertainty is
reduced.

Strategies

I Bayesian updating on the epistemic space
I Non-parametric statistical methods
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Available Data
Observations

I 2 sets of 25 realizations of x1
I Observations come from

stochastic model (aleatory
uncertainty)

I eCDF of two data sets are
quite different

I Gaussian Smoother approach
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Each realization associate to a Gaussian distribution:

F̂h(x) = 1
nσ
√
2π

∑n
k=1 exp

(
−(x−xk)2

2σ2

)

Pradlwarter, H. and Schuëller, G., The Use of Kernel Densities and Confidence Intervals to cope with
Insufficient Data in Validation Experiments, Computer Methods in Applied Mechanics and Engineering ,
197(29-32), 2008, 2550–2560.
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Bayesian updating on the epistemic space

The updated belief about θ∗ after observing the given dataset Dn,
is modelled by the posterior PDF p(θ|Dn):

p(θ|Dn) =
p(Dn|θ)p(θ)

P(Dn)
.

Likelihood function:

p(Dn|θ) =
n∏

i=1

p(x i ;θ)

is related to the probability of observing the samples Dn = {x i ,
i = 1, 2, . . . , n} assuming that the true parameters underlying the
model PDF p(x ;θ) is θ when a set of independent and identically
distributed observations Dn is available.
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Bayesian updating on the epistemic space
Likelihood estimation through kernel density

Assume that the samples Dn were drawn from p(x ;θ∗), where
θ∗ ∈ Ω; the likelihood p(Dn|θi ) will be defined in the following
way:

I draw M = 100 points from the aleatory space Ω, using copula
C ; we will call these samples {ωj : j = 1, . . . ,M};

I calculate x (j)
1 := h1(ωj ,θl ) for j = 1, . . . ,M;

I using kernel density estimation and the samples
{x (j)

1 : j = 1, . . . ,M}, estimate the PDF p(x |θi ) ≡ p(x ;θi )

I calculate the likelihood function as

p(Dn|θi ) =
n∏

k=1

p(xk |θi )
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Reduced epistemic space
Bayesian updating (25 observations)

162



Reduced epistemic space
Bayesian updating (50 observations)
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Reduced epistemic space
Bayesian updating
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Uncertainty Characterization
Non parametric approach

1. Generate ni realizations on the epistemic space θi
2. Evaluate the model x i1 := h1(αj ;θi ) for j = 1, . . . , nj ;
3. Estimate the empirical CDF F̂ (·|θi )
4. Compute Kolmogorov-Smirnov test (measure of similarity Di )

5. If Di < Dṽ collect θi .
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General remarks

Aim
Rank 4 category II & III parameters (x1, . . . , x5)
Rank 17 category II & III parameters (J1 J2)

Two strategies were employed:

I Nonspecificity techniques
I Global Sensitivity Analysis
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Nonspecificity techniques
Procedure and definitions

Pinching: Ii + p · (Ii − Ii ) where p = {0.1, 0.3, 0.5, 0.7, 0.9}
Nonspecificity: measure of epistemic uncertainty, of the output
random set after pinching was estimated

I Klir, G. J. and Wierman, M. J., Uncertainty-Based Information: Elements of Generalized
Information Theory , Vol. 15 of Studies in Fuzziness and Soft Computing), Physica-Verlag,
Heidelberg, Germany, 1998.

I Klir, G. J., Uncertainty and Information : Foundations of Generalized Information Theory , John
Wiley and Sons, New Jersey, 2006.

I Alvarez, D. A., Reduction of uncertainty using sensitivity analysis methods for infinite random
sets of indexable type, International Journal of Approximate Reasoning , Vol. 50, No. 5, 2009,
pp. 750 – 762.
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Nonspecificity approach
Some examples

Probability boxes corresponding
to the original (dashed lines) and
pinched (continuous lines) output
probability boxes.
Tools:

I 50 samples for each pinching
I GA for each focal element

(30000 individuals and 10
generations)
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Sensitivity Analysis
Background

Local Sensitivity Analysis

I Obtained varying input factors one
at time and holding others fixed to
a nominal value Z ∗i

I Involve partial derivatives

sZi = V (Y |Zi = z∗i ) = ∂f (Z)
∂zi
|Zi=z∗i ∗ σzi
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Sensitivity Analysis
Background

Global Sensitivity Analysis
I Obtained averaging the local sensitivity analysis over the

distribution of uncertain factors, E (V (Y |Zi = z∗i ))

I Variation of the output is taken globally (the supp(Z ) is
explored)

I Identify “active” input factors at a low computational cost
I Sensitivity measures (Sobol’ indexes) can by estimated via

Monte Carlo Method
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Global sensitivity analysis
General remarks

Compute Sobol’ indices and Total indices

Si =
VarXi [EX∼i (Y | xi )]

V [Y ]
Ti = 1− VarX∼i (EXi (Y | X∼i ))

Var(Y )

Requirements:
I Exact knowledge of PDF
I Variance of a measurable output

Strategy:
I Redefined model h∗: no p-boxes and a scalar output
I δi =

∫ +∞
−∞ |Fi (x)− Fref (x)|dx (Problem B1)

I extended-FAST method and Saltelli’s method

172



Redefined model for sensitivity analysis
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Redefined model for sensitivity analysis
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Global Sensitivity Analysis
Results tasks B1
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Examples of imprecise probability in engineering
Outline

Uncertainty Management in Engineering
Motivation
Method of analysis
Limitation of traditional approaches
Random Set

The NASA UQ Challenge Problem
The model
Uncertainty Characterization (Subproblem A)
Sensitivity Analysis (Subproblem B)
Uncertainty Propagation (Subproblem C)
Extreme Case Analysis (Subproblem D)
Robust Design (Subproblem E)

Conclusions

175



Uncertainty Propagation
General remarks

Aim
Find the range of the metrics with reduced and improved models

J1 = E [w (p,dbaseline)] and J2 = 1− P[w (p,dbaseline) < 0]

Two strategies were employed:

I Approach A: propagate intervals obtained from given
distribution-free p-boxes and construct Dempster-Shafer
structure

I Approach B: global optimization in the epistemic space (search
domain). Monte Carlo Simulation to estimate J1 and J2
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Uncertainty Quantification
Epistemic + Aleatory uncertainty

Double loop approach
I Sampling intervals and reliability analysis for each sample
I Difficult to treat distribution-free p-boxes
I Huge computational efforts
I Allows to identify “extreme realizations”

f(x)

Line Sampling
Simulation

Global Optimization
domain search

output
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Uncertainty Quantification
Propagation of Focal Elements

I Sample focal elements in the α-space
I Propagate intervals and construct Dempster-Shafer structure
I Limitation: treats p-boxes as distribution-free p-boxes

f(x)

Propagation of focal elemants

Global Optimization 
(Interval propagation)

domain
search

output

{i}

D-S structure
Sampling

0 1

α
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Extreme Case Analysis
Aim and strategy

Aim
I Identify epistemic realizations that yields extreme values of

J1 = E [w(p, dbaseline)] ; J2 = 1− P [w(p, dbaseline) < 0]

I Qualitatively describe the relation between sub-disciplines x
and failure modes g.

Strategies:

I Identify realizations from Subproblem C - Approach B
I Analyses range variability of the performance functions
g = f (x)
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Extreme Case analysis
Identify realizations
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Extreme Case analysis
Analysis of the failure modes
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Robust Design
Aim and strategy

Robust design in presence of aleatory and epistemic uncertainty:

I Design Variable: 14 control parameters (d)
I Objective Function: minimize max(J1) (expected value)
I Objective Function: minimize max(J2) (failure probability)
I Sensitivity analysis of the obtained designs

Computational challenges
I Each candidate solution: ≈ 3 days (i.e. max(J1), max(J2))
I Running time: ≈ 3 days (for each solution)

Strategies:

I Surrogate model (Artificial Neural Networks)
I Optimizer: Genetic Algorithms (and BOBYQA)
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Robust Design
Surrogate model (Artificial Neural Networks)

Approximation of the most computationally expensive part

I Inputs: x and d
I Outputs: g

Results:
I max(J1) = 0.0044

(baseline 3.05)
I max(J2) = 0.34

(baseline 0.41)

d

w

ANN

Interval/Random Predictor Model
Friday 09:00 - 11:00 Part 12
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Surrogate model (Artificial Neural Networks)
Training

Training data issues
I Positive and negative values of g concentrated around zero
I Few extremely high values

Non linear transformation: z(gj) := 1
200|min(gj )| −

1
100(gj+2|min(gj )|)

j min(gj ) max(gj )
1 -1.4353 5.57
2 -5.3903 15.90
3 -0.0533 1036.2
4 -0.0015 1159.2
5 -0.4375 1018.8
6 -0.0182 1080.1
7 -0.0002 1137.2
8 -0.0129 1072.5
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Optimization: Genetic Algorithms
Task E1: minimization of max(J1)
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max(J1) = 0.0044 (baseline 3.05)
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Optimization: Genetic Algorithms
Task E2: minimization of max(J2)

Objective: minimization of max(J2)

0 10 20 30 40 50 60
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

generation nr.

va
lu

e

 

 
d1
d2
d3
d4
d5
d6
d7
d8
d9
d10
d11
d12
d13
d14

0 10 20 30 40 50

0.4

0.6

0.8

1

generation nr.

su
p(

J 1)

dE2 = [ 0.0102, -0.2409, -0.0844, -2.1800, 0.8192, -0.1642,
-0.0981, -0.4674, -0.5958, 0.3230, 0.0015, -0.1975, 0.6249, 0.0052 ]

max(J2) = 0.34 (baseline 0.41)
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Uncertainty quantification in Engineering

Generalised Probabilistic method
I Rigorous framework to deal with scarce data, imprecision and

vagueness without making any assumption
I Dealing with different representations of uncertainties
I Utilisation of traditional stochastic methods and techniques
I Modelling epistemic uncertainties as aleatory uncertainty

might lead to severe over/under estimations
I Provides bounds of the estimations (traditional probabilistic

results always included)

Challenges
Still computational intensive analysis
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Summary of the approaches
Drawbacks and limitations

Uncertainty Characterization
I Bayesian: > 106 model evaluations and difficult to implement
I Non-Parametric: very fast and easy to implement

Sensitivity method
I Global sensitivity method: 5× 105. (using traditional tools)
I Nonspecificity method: 5× 107 (required dedicated tools).

Uncertainty propagation
I 250× 106 model evaluations (Nα = 1000 focal elements +

GA with 10000 individuals and 50/55 iterations)
Robust Design

I Requires surrogate model (Friday for further details)

Computationally demanding approach (global optimization)
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