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What is Decision Making: Offshore Wind Example
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What is Decision Making: Offshore Wind Example

Operations & Maintenance of Offshore Wind
30% of cost of offshore wind is operations & maintenance
= huge chunk of money

Types of Maintenance

I preventive (prevent future failures)
I corrective (fix after failure)
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What is Decision Making: Offshore Wind Example

Decisions
criterion: minimize cost

I when to perform maintenance?
I what is a good preventive/corrective balance?

limiting factor = wind speed & wave height for boarding

Uncertainties
Enormous potential for saving costs by making accurate predictions
of:

I wind & waves at different time scales
avoid missing maintenance opportunities
avoid costly transport when turbine cannot be boarded

I forecast failures before they happen
cost of preventing ≪ cost of fixing
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What is Decision Making: Offshore Wind Example

drastically different issues at different time scales:

Short Term: Optimize Actual Operations
what data on the wind farm should we collect
how to use it?

Medium Term: Business Case
how to convince investors to invest in offshore wind
may not have very much data to go from!

Long Term: Policy & Politics
should we encourage offshore, or look at other technologies?
very little data to go by, enormous uncertainty concerning future
climate change, attitude of electorate, etc.
not just about money
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What is Decision Making: Offshore Wind Example

Why Use Imprecise Probability for Decision Making?

I increases confidence in analysis based on sparse data
may help at all levels/time horizons

I risk-averse industries: rare events with large impact

Why NOT Use Imprecise Probability for Decision Making?

I computational expense
I abundant data, non-critical decisions

standard statistical treatment works as well

Communication!
how to communicate uncertainty?
uncertainty analysis only useful if results can be communicated
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Review of Classical Decision Theory: Example
Example: Visit Offshore Turbine by Boat in the Next Hour?

I parameter: average wave height X for next hour: unknown!
assume only possible values are x = 0.5 and x = 2

I data: observation Y , say average wave height in last hour
assume only possible values are y = 0.5 and y = 2

I decision: d = take boat, or d = do not take boat
I decision strategy δ:

which decision to make based on data y?
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Review of Classical Decision Theory: Example
Example: Visit Offshore Turbine by Boat in the Next Hour?

I utility function U(d , x): each combination of decision &
parameter leads to a different final reward value

I can only board offshore turbine for maintenance if X < 1
I taking boat costs €1000
I doing maintenance saves €4000

for example, expressed in units of €1000:
U(d , x) x = 0.5 x = 2
d = boat 3 −1

d = no boat 0 0
I likelihood: probability of data given parameter p(y |x)

p(y |x) y = 0.5 y = 2
x = 0.5 0.9 0.1
x = 2 0.3 0.7

I prior: probability of parameter p(x) before you see the data
p(x) x = 0.5 x = 2

0.4 0.6
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Review of Classical Decision Theory: Example
Frequentist Solution: Wald’s Expected Utility, Admissibility

frequentist = only use likelihood

1. for every possible strategy δ
and for every possible value x of X
calculate Wald’s expected utility expected utility = −risk

U(δ|x) := E (U(δ(Y ), x)|x) =
∑

y

U(δ(y), x)p(y |x) (6)

2. a strategy δ is inadmissible if there is a strategy δ′ such that
U(δ′|x) ≥ U(δ|x) for all x , and
U(δ′|x) > U(δ|x) for at least one x partial ordering of strategies

3. optimal Wald strategy
all admissible strategies maximal elements w.r.t. partial ordering
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Review of Classical Decision Theory: Example
Bayesian Solution: Maximize Posterior Expected Utility

Bayesian = only use posterior (∝ likelihood × prior)

1. calculate the posterior

p(x |y) =
p(y |x)p(x)∑
x ′ p(y |x ′)p(x ′)

(7)

2. for every possible observation y
and every possible decision d
calculate the posterior expected utility:

U(d |y) = E (U(d ,X )|y) =
∑

x

U(d , x)p(x |y) (8)

3. optimal Bayes strategy δ∗: max posterior expected utility

δ∗(y) = argmax
d

U(d |y) (9)

much easier to calculate than Wald’s admissible strategies! (why?)
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Review of Classical Decision Theory: Wald’s Theorem

Wald’s Theorem (1939 [25])
The set of Wald admissible strategies can always be recovered from
a Bayesian analysis, simply by varying the prior over all possible
distributions.

[Technical details omitted!]

‘equivalence’ of robust Bayesian statistics︸ ︷︷ ︸
sets of priors

and frequentist statistics

Plan
I develop decision making directly from sets of distributions
I look at some practical examples
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Robust Decision Making: R Code Preparation

1. start R
2. visit with browser: https://raw.githubusercontent.com/

mcmtroffaes/improb-redux/master/improb-redux.r

3. select and copy all R code from browser: CTRL-A, CTRL-C
4. go to R console
5. paste code into R console: CTRL-V, ENTER
6. keep browser window open, so you can rinse & repeat steps

3–5 every time you start a new R session
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Robust Decision Making: Aim & Assumptions
Can we develop a decision theory based on just the desirability

axioms, without the ‘fair price’ assumption, discussed on Monday?

Simple setting:
I SetM of probability mass functions on Ω.
I Consider gambles as functions on Ω

(random reward expressed in a utility scale).
I How should we choose among gambles?

Notation for any gamble g : Ω→ R

Ep(g) :=
∑

ω∈Ω

p(ω)g(ω) for any p ∈M (10)

P(g) := min
p∈M

Ep(g) lower prevision (11)

P(g) := max
p∈M

Ep(g) upper prevision (12)
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A Very Simple Example

Example (Machinery, Overtime, or Nothing?)
A company makes a product, and believes in increasing future demand.
The manager asks you, the decision expert, whether he should buy new
machinery, use overtime, or do nothing. The upcoming year, demand can
either increase or remain the same.
If we buy new machinery, then the profit at the end of the year will be
440 (in thousands of pounds) if demand increases, and 260 otherwise. On
the other hand, if we use overtime, then the profit will be 420 if demand
increases, and 300 otherwise. If we do nothing, profit will be 370.
According to our best current judgement, demand will increase with
probability at least 0.5, and at most 0.8:

M =

p1 p2
increase 0.5 0.8
stay 0.5 0.2

(each column is a probability mass function)

What advice can we give the manager?
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A Very Simple Example: Choice

set of
decisions

machinery
overtime
nothing

set of
gambles

increase stay
440 260
420 300
370 370

choice
function

set of
optimal
gambles

increase stay
420 300
370 370

set of
optimal
decisions

overtime
nothing

each row is a gamble

what is a good choice function,
under severe uncertainty?
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Γ-Maximin

(Wald 1945 [26], Gilboa & Schmeidler 1989 [11])

Definition (Γ-Maximin Optimality Criterion)
Choose any gamble whose lower prevision is maximal.

Recipe (Γ-Maximin Optimality Criterion)

1. set up the table with gambles and probabilities
2. calculate the expectation of each gamble

with respect to each probability mass function matrix multiplication

3. calculate minimum expectation of each gamble minimum of each row

4. choose decision with highest minimum expectation maximize

argmax
d∈D

P(gd ) (13)
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Γ-Maximin: Example
Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 P
increase 0.5 0.8
stay 0.5 0.2

machinery 440 260
overtime 420 300
nothing 370 370

(1) (2) (3) & (4)
pmfs = c(

0.5, 0.5,
0.8, 0.2)

rvars = c(
440, 260,
420, 300,
370, 370)

getexpectations = getexpectationsfunc (2, pmfs)
getlowerprevisions = getlowerprevisionsfunc(getexpectations)
isgammamaximin = isgammamaxisomethingfunc(getlowerprevisions)
isgammamaximin(rvars)
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Γ-Maximax
(Satia and Lave 1973 [21], probably others as well)

I Γ-maximin seems overly pessimistic; something more
optimistic?

Definition (Γ-Maximax Optimality Criterion)
Choose any gamble whose upper prevision is maximal.

Recipe (Γ-Maximax Optimality Criterion)

1. set up the table with gambles and probabilities
2. calculate the expectation of each gamble

with respect to each probability mass function matrix multiplication

3. calculate maximum expectation of each gamble maximum of each row

4. choose decision with highest maximum expectation maximize

argmax
d∈D

P(gd ) (14)
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Γ-Maximax: Example
Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 P
increase 0.5 0.8
stay 0.5 0.2

machinery 440 260
overtime 420 300
nothing 370 370

(1) (2) (3) & (4)
pmfs = c(

0.5, 0.5,
0.8, 0.2)

rvars = c(
440, 260,
420, 300,
370, 370)

getexpectations = getexpectationsfunc (2, pmfs)
getupperprevisions = getupperprevisionsfunc(getexpectations)
isgammamaximax = isgammamaxisomethingfunc(getupperprevisions)
isgammamaximax(rvars)
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Interval Maximality liteture: ‘interval dominance’

(Condorcet 1785 [9], Sen 1977 [22], Satia and Lave 1973 [21],
Kyburg 1983 [12], many others)

I get all reasonable options (from pessimistic to optimistic) at
once?

Definition (Partial Ordering by Interval Comparison)
We say that a gamble f interval dominates g , and write

f A g (15)

whenever
P(f ) > P(g) (16)

[P(f ),P(f )] dominates [P(g),P(g)]

Definition (Interval Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to A.

{d : (∀e ∈ D)(gd 6@ ge)} (17)
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Interval Maximality: Partial Ordering
@ determines a partial ordering between gambles

P(gd ) P(gd )

P(ge)P(ge)

gd @ ge

P(gd ) P(gd )

P(ge) P(ge)

incomparable

P(gd ) P(gd )

P(ge)P(ge)

gd A ge

P(gd ) P(gd )

P(ge) P(ge)

incomparable
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Interval Maximality: Hasse Diagram & Algorithm
maximal elements with partial ordering = undominated elements

example:

6
5
4
3
2
1

Hasse diagram

1 2 3

4

5

6

Theorem
All non-interval-maximal elements are dominated by the interval
that has the highest lower bound.
=⇒ no need for Hasse diagram to find interval maximal elements
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Interval Maximality: Practical Implementation

Recipe (Interval Maximality Optimality Criterion)

1. set up the table with gambles and probabilities
2. calculate the expectation of each gamble

with respect to each probability mass function matrix multiplication

3. calculate minimum and maximum expectation of each gamble
= interval expectation minimum & maximum of each row

4. choose the decisions whose maximum expectation
exceeds the overall largest minimum expectation undominated intervals

{
d : P(gd ) ≥ max

e∈D
P(ge)

}
(18)
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Interval Maximality: Example
Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 P P
increase 0.5 0.8
stay 0.5 0.2

machinery 440 260
overtime 420 300
nothing 370 370

(1) (2) (3) & (4)
pmfs = c(

0.5, 0.5,
0.8, 0.2)

rvars = c(
440, 260,
420, 300,
370, 370)

getexpectations = getexpectationsfunc (2, pmfs)
isintervalmaximal = ismaximalfunc(getexpectations , intervalcompare)
isintervalmaximal(rvars)
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Robust Bayes Maximality literature: ‘maximality’

(Condorcet 1785 [9], Sen 1977 [22], Walley 1991 [27])
I exploits the behavioural interpretation of lower previsions
I refines interval maximality (see Exercise 3 later!)

Definition (Partial Ordering by Robust Bayesian Comparison)
We say that f robust Bayes dominates g , and write

f � g (19)

whenever any of the following equivalent conditions hold:

(∀p ∈M) (Ep(f ) > Ep(g)) (20)
P(f − g) > 0 (21)

(willing to pay a small amount in order to trade g for f )
(f − g + ε is desirable for some ε > 0)
Remember, for any probability mass function p and any gamble f :

Ep(f ) :=
∑

ω∈Ω

p(ω)f (ω) (22)
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Robust Bayes Maximality: Hasse Diagram & Algorithm
Definition (Robust Bayes Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to �.
example:

Ep1 Ep3 Ep3
g1 1 0 −1
g2 0 0 0
g3 0.5 −1 −2
g4 0.2 −2 −3
g5 2 1 −0.5

Hasse diagram

1

2

3

4

5

Maximality

1

2

3

4

5

for browny points: interval maximal gambles?

Theorem
Every non-maximal element is dominated by a maximal element.

holds for arbitrary partial orderings!

=⇒ no need for Hasse diagram to find maximal elements:
once non-maximal element removed, no need to consider further!
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Robust Bayes Maximality: Practical Implementation

Recipe (Robust Bayes Maximality Optimality Criterion)

1. set up the table with gambles and probabilities
2. calculate the expectation of each gamble

with respect to each probability mass function matrix multiplication

3. sequentially remove all decisions
whose expectation rows are point-wise dominated
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Robust Bayes Maximality: Example
Example (Machinery, Overtime, or Nothing)

increase stay p1 p2
increase 0.5 0.8
stay 0.5 0.2

machinery 440 260
overtime 420 300
nothing 370 370

(1) (2)
pmfs = c(

0.5, 0.5,
0.8, 0.2)

rvars = c(
440, 260,
420, 300,
370, 370)

getexpectations = getexpectationsfunc (2, pmfs)
isrbayesmaximal = ismaximalfunc(getexpectations , rbayescompare)
isrbayesmaximal(rvars)
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Robust Bayes Admissibility literature: ‘E-admissibility’

(Pascal 1662 [16], Levi 1980 [13], Berger 1984 [6], Walley 1991
[27])

I refines robust Bayes maximality

Definition (Robust Bayes Admissibility Optimality Criterion)
Choose any gamble which maximizes expectation
with respect to some p ∈M.
example:

Ep1 Ep3 Ep3
g1 1 0 −1
g2 0 0 0
g3 0.5 −1 −2
g4 0.2 −2 −3
g5 2 1 −0.5

notes:
I computational challenge ifM is large
I not invariant under convex hull operation:

not enough just to look at extreme points 231
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Robust Bayes Admissibility: Practical Implementation

Recipe (Robust Bayes Admissibility Optimality Criterion)

1. set up the table with gambles and probabilities
2. calculate the expectation of each gamble

with respect to each probability mass function matrix multiplication

3. take all decisions that achieve a maximum
in some expectation column
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Robust Bayes Admissibility: Example
Example (Machinery, Overtime, or Nothing)

increase stay p1 p2
increase 0.5 0.8
stay 0.5 0.2

machinery 440 260
overtime 420 300
nothing 370 370

(1) (2) & (3)
pmfs = c(

0.5, 0.5,
0.8, 0.2)

rvars = c(
440, 260,
420, 300,
370, 370)

getexpectations = getexpectationsfunc (2, pmfs)
isrbayesadmissible = isrbayesadmissiblefunc(getexpectations)
isrbayesadmissible(rvars)
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Robust Bayes Admissibility: Extreme Points Issue
Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 p3
increase 0.5 0.8 0.65
stay 0.5 0.2 0.35

machinery 440 260
overtime 420 300
nothing 370 370

pmfs = c(
0.5, 0.5,
0.8, 0.2,
0.65, 0.35)

rvars = c(
440, 260,
420, 300,
370, 370)

getexpectations = getexpectationsfunc (2, pmfs)
isrbayesadmissible = isrbayesadmissiblefunc(getexpectations)
isrbayesadmissible(rvars)
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Exercises

I Consider again the same very simple example. We have done
additional market research, and we now know that demand will
increase with probability at least 0.6, and at most 0.65. What
advice can we give the manager now? Investigate with each
optimality criterion.

Hint: M =

p1 p2
increase 0.6 0.65
stay 0.4 0.35
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Exercises
I You have the option to invest some money. The market can

either improve, remain, or worsen. Your set of probabilities are
tabulated below. You have the choice between 4 options,
summarized in the decision tree below.

100impro
ve

50
remain

−25worsen

op
tio
n
1

75impro
ve

50
remain

0worsen

opt
ion

2

60impro
ve

55
remain

10worsen

option 3

35

option 4

M =

p1 p2

improve 0.0 0.3
remain 0.6 0.3
worsen 0.4 0.4

Which options should you definitely not consider? First
consider interval maximality, then consider robust Bayes
maximality. Which of these two criteria gives the better
answer?
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A ranking problem

In an environmental problem, three possible decisions can be made.
The table below lists the suitability of each of the options, as a
‘best estimate’, and also giving lower and upper bounds:

option best estimate lower bound upper bound
1 6 5 12
2 10 3 11
3 8 4 10

You may assume that there is a possibility space Ω for this problem,
and that each option i induces some gamble gi on Ω.
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A ranking problem (continued)
I Assume the best estimate corresponds to the (precise)

expectation of gi , so for example, P(g1) = P(g1) = 6. What is
the optimal decision according to each of the decision criteria?

I We are not really sure whether we can interpret the best
estimates as precise expectations, so we propose the following
lower prevision, where E (gi ) is the best estimate of gi , and β
is a parameter between 0 and 1:

P

(
α0 +

3∑

i=1

αigi

)
:= α0 + β

3∑

i=1

αiE (gi ) (23)

+ (1− β)
3∑

i=1

min{αi min(gi ), αi max(gi )} (24)

for any values of α0, . . . , α3 ∈ R. Try to interpret the above
formula as well as the β parameter. Identify the optimal
decisions for β = 0, β = 1, and β = 0.5 according to
Γ-maximin, interval dominance, and maximality.
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Credal Classification: What is Classification?
I actual class c (unknown), attributes a1, . . . , ak
I decided class d
I U(d , c) utility for deciding class is d if real class is c

typical choice: U(d , c) = 1 if d = c and U(d , c) = 0 if d 6= c
I aim: choose the best class given attributes

d∗ = argmax
d

∑

c

U(d , c)p(c |a) (25)

= argmax
c

p(c |a) = argmax
c

p(c , a)/p(a) (26)

= argmax
c

p(c , a) (27)

Open issues:
I How do we estimate the probabilities?
I Dealing with scarce data?
I Dealing with missing data?
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Credal Classification: The Naive Bayes Classifier
Naive Bayes Classifier
Assume attributes are independent conditional on class:

p(c , a) = p(c)p(a|c) = p(c)
k∏

i=1

p(ai |c) (28)

Estimation of p(c) and p(a|c)?

I maximum likelihood:

p(c) =
n(c)

N
p(ai |c) =

n(ai , c)

n(c)
(29)

I Bayesian estimate with Dirichlet prior:

p(c) =
n(c) + st(c)

N + s
p(ai |c) =

n(ai , c) + st(ai , c)

n(c) + st(c)
(30)

(where
∑

ai t(ai , c) = t(c))
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Credal Classification: The Naive Credal Classifier

Estimation of p(c) and p(a|c)?

I robust Bayesian estimate with imprecise Dirichlet model:
as with Bayesian estimate but with
sensitivity analysis over all possible t(c) and t(ai , c)

I Bounds for probabilities/expected utilities via optimisation.
I Use any of the decision criteria we discussed (interval

dominance, robust Bayes maximality, robust Bayes
admissibility, . . . )

Case that we will study here:
I Simple approximate probability intervals.
I Interval dominance criterion.
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Credal Classification: The Naive Credal Classifier

Bounds

p(c , a) = inf
t

n(c) + st(c)

N + s

k∏

i=1

n(ai , c) + st(ai , c)

n(c) + st(c)
(31)

≥ n(c)

N + s

k∏

i=1

n(ai , c)

n(c) + s
= p(c)

k∏

i=1

p(ai |c) (32)

p(c , a) = sup
t

n(c) + st(c)

N + s

k∏

i=1

n(ai , c) + st(ai , c)

n(c) + st(c)
(33)

≤ n(c) + s
N + s

k∏

i=1

n(ai , c) + s
n(c) + s

= p(c)
k∏

i=1

p(ai |c) (34)
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Credal Classification: The Naive Credal Classifier

Interval Dominance
Consider the set of all classes c for which

p(c)
k∏

i=1

p(ai |c) ≥ max
c ′

p(c ′)
k∏

i=1

p(ai |c ′) (35)

classifier can return multiple classes if it is unsure about the
probabilities!

Credal Classification
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Breast Cancer Example: R Code Preparation

1. start R
2. visit course webpage with browser
3. download the data.txt and code.r files
4. select and copy all R code from your favourite editor:

CTRL-A, CTRL-C
5. go to R console
6. paste code into R console: CTRL-V, ENTER
7. keep browser window open, so you can rinse & repeat steps

3–5 every time you start a new R session
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Breast Cancer Example

mammo = getdata ()
myclassifier = classifier.naive2 (0)
model = myclassifier$trainer(mammo , 1:5, 6)
testrow = mammo [6,]
print(testrow)
print(myclassifier$tester(model , testrow ))
testrow = mammo [5,]
print(testrow)
print(myclassifier$tester(model , testrow ))

myclassifier = classifier.composed(
list(classifier.naive2 (0),

classifier.naive2 (1),
classifier.credal (2)))

mammo = getdata ()[1:30 ,]
print(kfcv.classifier(mammo , 1:5, 6, myclassifier ))
print(kfcv.classifier(mammo , 2:5, 6, myclassifier ))
print(kfcv.classifier(mammo , 1, 6, myclassifier ))
mammo = getdata ()
print(kfcv.classifier(mammo , 2:5, 1, myclassifier ))
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Exercises

I Try to run the code for the credal classifier.
I What do you observe if you increase the amount of data that

is used to train the classifier? Compare the results you get
from the traditional classifier with the results you get from the
credal classifier.

I What happens if you increase the s value of the credal
classifier? Confirm your intuition by running the code.

I How would the formulas for the credal classifier (based on
interval dominance) change if the utilities were not 0–1 valued?

I Zaffalon’s 2001 paper discusses how the problem can be solved
using robust Bayes maximality. Try to implement his algorithm
in R by modifying the existing code for interval dominance.
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