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Decision-analytic models must often be informed using
data that are only indirectly related to the main model pa-
rameters. The authors outline how to implement a Bayesian
synthesis of diverse sources of evidence to calibrate the pa-
rameters of a complex model. A graphical model is built to
represent how observed data are generated from statistical
models with unknown parameters and how those parame-
ters are related to quantities of interest for decision making.
This forms the basis of an algorithm to estimate a posterior
probability distribution, which represents the updated state
of evidence for all unknowns given all data and prior be-
liefs. This process calibrates the quantities of interest
against data and, at the same time, propagates all parame-
ter uncertainties to the results used for decision making. To
illustrate these methods, the authors demonstrate how
a previously developed Markov model for the progression

of human papillomavirus (HPV-16) infection was rebuilt
in a Bayesian framework. Transition probabilities between
states of disease severity are inferred indirectly from
cross-sectional observations of prevalence of HPV-16 and
HPV-16–related disease by age, cervical cancer incidence,
and other published information. Previously, a discrete col-
lection of plausible scenarios was identified but with no
further indication of which of these are more plausible.
Instead, the authors derive a Bayesian posterior distribu-
tion, in which scenarios are implicitly weighted according
to how well they are supported by the data. In particular,
we emphasize the appropriate choice of prior distributions
and checking and comparison of fitted models. Key words:
multiparameter evidence synthesis; Markov models; simu-
lation methods; probabilistic sensitivity analysis. (Med
Decis Making 2015;35:148–161)

INTRODUCTION

Building a decision-analytic model to represent
the history of disease and treatment usually involves
choices that are based on uncertain information. The

magnitude of this uncertainty can be quantified, but
improperly quantifying uncertainty can lead to biased
decisions as well as wrongly allocating resources for fur-
ther research.1,2 Uncertainties in models are usually
best characterized probabilistically: by parameterizing
the model flexibly,3 characterizing each parameter by
a data-derived distribution, and simulating the resulting
probabilistic model to produce a distribution for model
outputs. One approach to this is described by the
umbrella term of Bayesian evidence synthesis, which
is a statistical framework for explicitly modeling several
related and connected sources of data, and naturally
incorporates the uncertainty in model parameters.

In particular, when the current evidence is weak or
only indirectly related to the main parameters, it may
not be straightforward to accurately represent it in the
model. A crude approach to calibrating a model
against indirect data is to informally adjust the
parameters until predictions of key outcomes
visually appear to fit observed data. For example,
recent models of human papillomavirus (HPV)
infections4–6 adjust parameters governing the
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transmission and natural history of HPV until models
produce estimates of HPV prevalence that are similar
to data. A more quantitative approach involves sam-
pling model parameters from plausible ranges, com-
paring observed data with outputs from the model,
and retaining a subset of parameters that satisfy
some arbitrary standard of fit to the data, resulting
in a range of scenarios, usually with no further indica-
tion of which are more plausible. This approach has
been used, for example, in models of hepatitis C7

and HPV.8–11 Vanni and others12 reviewed the
choices involved in model calibration, including
the appropriate measure of fit to the data, the algo-
rithm to search for the best-fitting parameters, the
standard of fit required to deem a set of parameters
plausible, and methods for weighting the retained
scenarios in probabilistic sensitivity analysis. The
uncertainty about these choices can substantially
affect the model outputs.13,14

Calibration as Bayesian Evidence Synthesis

These uncertainties can be accounted for by con-
sidering model calibration as a problem of Bayesian
evidence synthesis. The main features of such an
approach are as follows.

1. Multiple indirectly related data sets are assumed to
have been generated from probability distributions
(‘‘statistical models’’) with parameters that are
related to each other. Consider the simplified exam-
ple in Figure 1. There are 2 data sets (A and B), each
providing direct information about different parame-
ters, which are known functions of the parameters of
interest to decision making. This is an example
of a directed acyclic graph, explained in more detail
in ‘‘Building a Bayesian Model for Evidence
Synthesis.’’

2. This graph forms the basis for computing the posterior
probability distribution of the parameters. This repre-
sents the updated state of evidence, from combining
prior beliefs and observed data using Bayes’ theorem.
We describe this process in more detail in ‘‘Building
a Bayesian Model for Evidence Synthesis.’’

3. The uncertainty about the parameters of interest,
expressed through this distribution, is then propa-
gated through the model to generate uncertainty dis-
tributions for the results required for policy making,
such as life years gained, infections prevented, or
expected costs (Figure 1).

4. The distributions of the results give appropriate
weights to each parameter value, according to
how much evidence there is in the data, thus providing
a natural way to calibrate the model against the data.

This approach is variously referred to as multipa-
rameter evidence synthesis,15,16 generalized evi-
dence synthesis,17 or comprehensive decision
modeling.18 This provides a theoretically grounded
solution to the choices discussed by Vanni and
others.12 The measure of fit to the data is implicit in
Bayes’ theorem, and there are standard methods for
computing the posterior distribution. There is no
need to define an arbitrary standard of fit, and calibra-
tion is unified with probabilistic sensitivity analysis.
For example, Goubar et al.19 and Presanis et al.20 syn-
thesized multiple survey data sets in this way to esti-
mate the prevalence of HIV infection. Whyte and
others21 used these methods to calibrate the parame-
ters of a decision model for colorectal cancer natural
history, and in a model for transmission of HPV,
Bogaards and others22 used similar methods to esti-
mate transmissibility and resistance to infection.

In ‘‘Building a Bayesian Model for Evidence Syn-
thesis,’’ we outline the key steps of building a compre-
hensive Bayesian model for evidence synthesis,
calibration, and expressing uncertainty, and we
show how they can be applied to rebuilding a recently
published model for the progression of HPV infec-
tions,11 introduced in the next section. By improving

Figure 1 Illustration of decision model calibration as a directed

acyclic graph. ‘‘Nodes’’ at the start of an arrow (parents) are

assumed to ‘‘generate’’ the nodes at the end of the arrow (children).

Bold-bordered boxes represent observed data. The white boxes are
quantities that are defined as explicit functions of other parame-

ters. The dashed boxes represent quantities that cannot be defined

this way and thus are given prior distributions (see ‘‘Directed Acy-
clic Graphs’’).
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the characterization of uncertainty in this model, we
reflect more closely the extent of the current evidence
and the potential value of further research. A more
subtle benefit is that we reduce biases in the model out-
puts, since they are a nonlinear function of the uncer-
tain inputs.2 The posterior also tells us how well the
data confirm or modify our prior beliefs about the input
parameters. We emphasize careful assessment of the fit
of the model, potential conflicts between different sour-
ces of evidence, and the appropriate choice and influ-
ence of the prior distribution. Finally, we discuss the
strengths and challenges of this approach.

HPV PROGRESSION MODEL

Infection with HPV type 16 or 18 is associated with
about 70% of cervical cancers. To evaluate the long-
term benefits of cervical screening and vaccination

against HPV, estimates of the natural history of
HPV-related disease from initial infection to invasive
cancer are required. A model has been developed11 to
estimate progression rates of HPV-related disease,
through grades of cervical intraepithelial neoplasia
(CIN) to cancer. This was combined with transmis-
sion and economic models to evaluate policies for
HPV vaccination in the United Kingdom.10,23

For the purpose of our tutorial, we investigate only
the progression component. A discrete-time Markov
model is used to represent the natural history of a sin-
gle HPV-16 infection. This has a monthly cycle and 9
states, illustrated in Figure 2. The parameters we
aim to estimate are the 5 progression and 3 regression
probabilities Pij between the disease states i; j : j � 6,
conditionally on the infection not clearing naturally.
There were no relevant longitudinal data available for
the United Kingdom at the time of the study from

Table 1 Human Papillomavirus (HPV) Model Parameters and Associated Data Sources

Parameter Informed by Direct Data Data Source Age Groups k

Cytological state j prevalence in age group k
(HPV-16–positive women): qþjk

ARTISTIC ðyþjk; ykÞ Annually 20–35; 5-yearly
35–55, 55–64

Cytological state prevalence (HPV-16–
negative women): q�jk

ARTISTIC ðy�jk; nk � ykÞ

HPV-16 prevalence at age tk: pHðtkÞ ARTISTIC (yk; nk)
Cytological state prevalence (HPV presence

unknown): qjk

NHS cervical cancer screening
program ðyN

jk; nN
k Þ

Under 20; 5-yearly 20–74,
75 1

Squamous cell cervical cancer incidence: pC
k Office for National Statistics, England

[2004] (Sue Westlake, personal
communication) (nC

k ; NC
k )

Yearly 10–89

HPV type distribution in cervical cancer: p16
k Munoz and others42 \35, 35–49, �50

Screening and treatment rates: Pi7ðtÞ Various; see Jit and others11 Screening rates 0–20;
5-yearly to 80

Mortality rates for women at age t: (Pi8ðtÞ,
common to all CIN states i)

Office for National Statistics, England
and Wales [2003]43

Yearly 10–90

Hysterectomy rates (for reasons unrelated to
cervical disease) Pi9ðtÞ

Redburn and Murphy44 10–20; 5-yearly to 80, 80–90

Informed by Indirect Data Above and Given
Informative Priors Prior Source Age Groups k

Transition probabilities Pij between CIN
states i; j : j � 6

Insinga and others28 Independent of age

Specificity of HPV-16 test: 1� pFP Expert belief; see Jit and others11

Accuracy of cervical screening: S Nanda and others45; Arbyn and
others46

Key Intermediate Quantities—Defined as
Functions of Other Parameters Prior Source Age Groups k

HPV-16 prevalence at age t under 20 years
(predicted): pHðtÞ

Monthly 10–90

CIN state j prevalence: pjðtÞ Monthly 10–90

See Figure 3 for how these are connected in a graphical model. CIN, cervical intraepithelial neoplasia; NHS, National Health Service.
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which to estimate these probabilities. Instead, a range
of indirect cross-sectional data sets were used, listed
in Table 1 together with the model parameters they
directly inform. The principal data source is the
recruitment phase of the ARTISTIC trial,24 which
informs age-specific prevalences of HPV-16 and
HPV-16–related cervical dysplasia. This is supple-
mented by data from the UK National Health Service
cervical cancer screening program (NHSCCSP),25 can-
cer registry data, national mortality statistics, and pub-
lished literature, as detailed in Jit and others.11

In Jit and others,11 point estimates of the transition
probabilities were calculated from data. The only
expression of uncertainty was a discrete set of 54
alternative scenarios for the transition probabilities;
otherwise, these and many other uncertain parameters
were assumed to be fixed. Here we reimplement this
model as a Bayesian evidence synthesis. The scenarios
and the fixed parameters are replaced by uncertain
parameters with smooth prior distributions, which
are updated to posterior distributions conditionally
on the data. This implicitly weights each of the scenar-
ios by how well they are supported by the evidence and
improves the characterization of uncertainty.

BUILDING A BAYESIAN MODEL FOR EVIDENCE
SYNTHESIS

Directed Acyclic Graphs

In a Bayesian evidence synthesis, the ‘‘model’’
consists of not only a mathematical representation
of the disease and/or treatment process (Figure 2 in
this example) but also the network of statistical mod-
els and relationships that connect the parameters of
that process with observed data and prior informa-
tion. The basis of this approach is to build a directed
acyclic graph or graphical model to represent these

relationships, shown in Figure 3 for the HPV exam-
ple. Quantities at the start of an arrow are assumed
to ‘‘generate’’ the quantities at the end of the arrow;
therefore, we call these parents and children, respec-
tively. There are 3 basic types of quantity (or ‘‘node’’).

1. Data generated from a statistical model, whose
parameters are the node’s parents. These are shown
as bold boxes in Figure 3.

2. Unknown parameters defined as deterministic func-
tions of other parameters. These are shown as white
boxes in Figure 3.

3. Parameters with no parents and thus no arrows
directed toward them in the graph. These are shown
as dashed boxes in Figure 3. In other words, while
they may generate data or be used in the definitions
of child parameters, they are not defined themselves
as functions of further parameters. These must be
given prior distributions representing beliefs about
their plausible values, as explained further in ‘‘Spec-
ifying Priors for Parameters.’’ Or if uncertainty about
them is negligible, they may be assumed to be con-
stant, for example, mortality rates that are estimated
from full-population data in the HPV application.

Example. In the ARTISTIC data, there are yk

women diagnosed with HPV-16 infection out of nk

women in several age groups k. yk arise from a bino-
mial distribution with denominator nk and some
probability pDðtkÞ, assuming that each woman in
the age group with midpoint tk has the same proba-
bility of being diagnosed with HPV-16. In graphical
model terminology, this probability and the denom-
inator generate the observed counts and thus are the
parent nodes. Note the distinction between
(observed) data and (unknown) parameters. The
observed prevalence is yk=nk, but the prevalence
parameter is the unknown probability pD(tk) that
an unobserved woman from the same population

Figure 2 Markov model for natural history of human papillomavirus 16 (HPV-16) infection—states of cervical neoplasia and permitted
monthly transitions with associated probabilities. Progression to treatment, death, and hysterectomy is allowed from all states up to pre-

cancer. CIN, cervical intraepithelial neoplasia.
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and age group is diagnosed with HPV-16. Instead of
including just yk=nk in the model as a constant esti-
mate of the underlying prevalence, we estimate its
posterior distribution to account for statistical
uncertainty, which depends heavily on the number
of women contributing to that estimate.

Example. The DNA test for HPV-16 used in
ARTISTIC has 100% sensitivity but is not always

clinically relevant due to cross-reactivity between
HPV types. We therefore express the diagnosed
prevalence pDðtÞ as a sum of the probability pHðtÞ
that a woman is truly HPV-16 positive and the
chance of a false-positive DNA test pFP multiplied
by the probability of being truly HPV-16 negative:

pDðtÞ5 pHðtÞ1 pFPð1� pHðtÞÞ:

Figure 3 Directed graphical model for evidence synthesis to estimate transition probabilities between states of human papillomavirus 16
(HPV-16) infection. Notation as in Figure 1. CIN, cervical intraepithelial neoplasia.
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pFP is given a prior based on expert belief. Thus, the false-
positive probability and the true HPV-16 prevalence are
the parents of the diagnosed prevalence in Figure 3.

Once nodes have been defined, they can be used in
the definitions of other uncertain quantities required
by the model. In this example, the true HPV-16 prev-
alence pHðtÞis itself assumed to be a nonlinear func-
tion of age t (illustrated in Figure 4). This enables us
to extrapolate prevalences observed in women aged
20 to 64 years from ARTISTIC to younger (or older)
ages t, which is required since the risk of infection
by sexual transmission begins around ages 10 to 14
years, and the peak HPV-16 prevalence occurs
around 20 years. The unknown parameters governing
the nonlinear curve are given prior distributions,
which are updated to posteriors given the diagnosed
prevalence data yk, giving the fitted curve in Figure 4.
Figure 3 shows how these parameters, pH, pD, and the
model generating yk are connected through the graph.

Including Indirect Data

Indirect data can be included by adding extra
nodes and arrows in the graph to define how the

data are generated from a statistical model and how
the parameters of that model are related to other
parameters.

Example. The transition probabilities between
grades of HPV-16–related neoplasia are largely
informed by age-specific counts yþjk of states j of cer-
vical dysplasia observed by cytological screening
among women diagnosed with HPV-16 in ARTIS-
TIC. These states are related to grades of neoplasia
through parameters describing the sensitivity and
specificity of screening, and their prevalences are
also adjusted for the specificity of the test for HPV-
16. We also incorporate indirect data on these cyto-
logical state prevalences from the national screening
program. This gives the number of women, by age
group, diagnosed in each state, but it is not known
whether these women have any type of HPV. To
include these in the model, we assume the counts
of women (in age group k) by state arise from a mul-
tinomial distribution defined by a set of probabili-
ties qjk of occupying each state j 5 1; . . . ; 5, and an
age-specific denominator. These probabilities are
an average of the prevalences among women diag-
nosed as HPV-16 positive (qþjk) and negative (q�jk),
weighted by the probability of being diagnosed
with HPV-16 or not, respectively:

qjk 5 pDðtkÞqþjk 1 ð1� pDðtkÞÞq�jk: ð1Þ

Thus, knowing the qjk, q�jk, and pDðtkÞ gives implicit
information about the qþjk to supplement the direct
information from the HPV-16–specific count data in
ARTISTIC.

The remainder of the graphical model for the HPV
example is set out in detail in the online supplement.
Briefly, the transition probabilities to diagnosed
(squamous cell) cervical cancer are informed by
observed incidences from 2004 cancer registry data,
adjusted to represent HPV-16–related cases in the
screened population. The transition probabilities
between states of neoplasia are assumed to generate
monthly CIN state prevalences and cancer incidences
in a hypothetical open cohort of women infected with
HPV-16. These prevalence and incidence parameters,
after various adjustments, are assumed to generate the
observed data. Thus, all evidence informing the model
has been included in the graph as explicit data, param-
eters with prior distributions, or constant parameters.

Thus, while decision models are typically
described as being ‘‘populated’’ with values derived
from data, the Bayesian approach also makes the
data and its analysis an integral part of the model.
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Figure 4 Prevalences of diagnosed human papillomavirus 16

(HPV-16) infection among women in ARTISTIC (2006) data and
extrapolation to younger women—observed and model posterior

95% credible intervals. Since the specificity is more than 99%,

this also illustrates the approximate trajectory of the true preva-

lence, pH, related to age t as pHðtÞ5 B 1 expð�Cðt� t0ÞÞðAðt�
t0Þn � BÞ (see ‘‘Specifying Priors for Parameters’’). CI, credible

interval; NHSCCSP, National Health Service cervical cancer

screening program.
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Specifying Priors for Parameters

Prior distributions must be chosen for quantities with
no parents in the graph, just as in standard probabilistic
decision modeling.2 These may be vague or based on
substantive information but must represent our beliefs
prior to observing the data included in the graph.

Vague priors

If there are sufficient data already in the model to
give a precise estimate of a parameter, then a vague
prior within plausible ranges is reasonable. With suf-
ficient data, the exact choice of prior will not be influ-
ential, although sensitivity analysis is advisable if the
choice is uncertain or suspected to be influential (see
‘‘Model Checking and Sensitivity Analysis’’).

Example. The prevalences of cytological states q�jk
among women not diagnosed with HPV-16 are given
vague priors (a uniform Dirichlet distribution, as
recommended in Briggs and others26). Since we
have strong information about them from the corre-
sponding counts in ARTISTIC, this prior will have
little influence on the results.

Parameters should be transformed to a natural
scale before being given a prior, to enable beliefs to
be expressed intuitively.

Example. Since the parameters A and C in the
prevalence extrapolation model (Figure 4) are diffi-
cult to interpret, we use vague priors, within plausi-
ble ranges, for transformations of those parameters
to intuitive scales: a uniform ð0; 1Þ prior for the max-
imum HPV-16 prevalence pmax, a uniformð0; 30Þ
prior for the age at this maximum tmax, and also
a uniformð10; 14Þ prior for the minimum age of
infection t0. Assuming the prevalence for the oldest
women B 5 0 for the purpose of deriving these pri-
ors, these give C 5 n=ðtmax � t0Þ and A 5 pmax

expðnÞðn=CÞ�n. To replace the discrete scenarios
used in Jit and others11 with a continuous distribu-
tion, we place a uniformð1; 2Þ prior on the polyno-
mial order n. These priors are all very vague
compared with the information in the data—see Fig-
ure 5 for the corresponding posteriors.

Informative priors

If there are no direct data to inform a parameter,
informative priors could be derived from published
literature or from expert beliefs, ideally formally eli-
cited.27 When the priors are updated to posteriors,
we can assess how much the data confirm or modify
our substantive beliefs.

Example. We enhance the original analysis of Jit
and others11 by incorporating prior knowledge about
the transition probabilities between grades of neo-
plasia in the presence of HPV-16 (Pij : j � 6). These
are derived from a systematic review of HPV natural
history by Jit et al., which did not include Insinga
and others.28 This presents annual probabilities,
with the number of patients and denominators N
used to obtain them, for 4 of the 8 transitions. These
were converted to monthly probabilities and corre-
sponding monthly counts y by assuming a constant
transition rate within the year. This gives Beta
ðy 1 1; N � y 1 1Þprior distributions for the monthly
probabilities,2,29 illustrated in Figure 6. The other
4 transition probabilities were given uniformð0; 1Þ
priors. Any correlations between different parame-
ters should be acknowledged in decision models30;
we assume prior independence between the proba-
bilities, but if any correlations are plausible, given
the data, these will appear in the posterior.

Example. For the sensitivities and specificities of
cytological screening and the false-positive rate of
the HPV-16 test, pFP, we used uniform or Beta priors
whose bounds or quantiles were chosen to cover the
discrete scenarios previously presented in the anal-
ysis by Jit and others.11 The priors were independent
given the lack of published information about any
correlations.

Computing the Posterior Distribution

Once all quantities in the graph have been defined
or given priors, the joint posterior distribution of all
unknowns will be calculated, which may include
quantities of direct interest to a decision maker,
such as the incremental net benefit of an intervention.
The decision then allows for the parameter uncer-
tainty in all model inputs and includes the evidence
from the calibration data. In other words, probabilis-
tic sensitivity analysis and model calibration are per-
formed simultaneously.

The graph shows how the underlying parameters
of interest—in Figure 3, the transition probabilities
Pij between disease states i; j—can be informed
simultaneously from several data sources. Learning
about the posterior of a parameter can occur ‘‘both
ways’’ along arrows. For example (see ‘‘Including
Indirect Data’’), the posterior distribution of the
HPV-16–positive cytological state prevalences qþjk is
derived directly from the corresponding ARTISTIC
data yþjk but is also influenced by its 3 parent parame-
ters and their own ancestors and descendants, as well
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as by its other children, the HPV-16–unknown cyto-
logical state prevalences qjk, which are inferred
from the national screening program. The posterior
distribution of the transition probabilities thus
depends directly on its prior but also indirectly on
all data and on the priors of all other parameters.

Markov chain Monte Carlo

Bayes’ theorem states that the joint posterior distri-
bution (probability density) pðujxÞ of the set of
unknowns in the model u given all data x is propor-
tional to the (joint) prior pðuÞ multiplied by the sam-
pling distribution of data given parameters pðxjuÞ
(often called the likelihood). However, the constant
of proportionality and summaries of the resulting pos-
terior are generally too complex to be calculated

directly. Instead, the graphical model structure gives
a basis for an iterative Markov chain Monte Carlo
(MCMC) algorithm to generate samples from the poste-
rior distribution. The distribution can be expressed as
the product

Q
v2u pðvjpa½v�Þ of all distributions of indi-

vidual nodes v, each conditional on its parents pa½v�.31

� Initial values are chosen for all v.
� New values are then sampled from the full-condi-

tional distributions pðvj:Þ of each node v in turn,
where . indicates the current values of all nodes other
than v. Each full-conditional distribution can be sim-
plified as the product of the prior distribution and the
distributions of all children of v:

pðvj:Þ5 pðvjpa½v�Þ
Y

v2pa½w�
pðwjpa½w�Þ:

0.0 0.2 0.4 0.6 0.8 1.0

(a) Sensitivity of detecting CIN1

(b) Sensitivity of detecting CIN1 or higher

(c) Sensitivity of detecting CIN2/3

(d) False positive rate of Pap screen

(e) False positive rate of CIN2/3 given CIN1

Posterior

Prior

0.990 0.992 0.994 0.996 0.998 1.000

Specificity of HPV DNA test: 1 − pFP

0 10 30 50 70 90

Maximum HPV16 prevalence (%): pmax

10 14 18 22 26 30

Minimum age of infection (years): t0

Age of maximum prevalence (years): tmax

Figure 5 Prior distributions (thin lines) and posterior distributions (thicker strips with darkness proportional to probability density and
95% credible limits) for cytological screening accuracies, human papillomavirus 16 (HPV-16) test specificity, and parameters of the model

for extrapolating HPV-16 prevalence. CIN, cervical intraepithelial neoplasia.
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� Through the distributions of the children (the likeli-
hood), any data directly or indirectly generated by v
will contribute to the posterior of v.

� Each iteration consists of 1 sample from the full set of
nodes u. After an initial sequence of ‘‘burn-in’’ itera-
tions, the algorithm will converge (under weak condi-
tions; see Gilks and others31) such that the samples

will eventually be drawn from the true joint posterior
distribution.

The BUGS language and software

The BUGS language32 allows graphical models to
be expressed in a text format. In brief, each node’s
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HPV16−CIN1
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Base case
No NHSCCSP data
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10x prior variance
100% screen accuracy
Jit et al. (2010)

0.0 0.2 0.4 0.6 0.8 1.0

CIN1−CIN2
Prior
Base case
No NHSCCSP data
Conflicted
10x prior variance
100% screen accuracy

Jit et al. (2010)

0.00 0.01 0.02 0.03 0.04 0.05

CIN2−CIN3
Uniform(0,1) prior
Base case
No NHSCCSP data
Conflicted
10x prior variance
100% screen accuracy
Jit et al. (2010)
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Jit et al. (2010)
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Figure 6 Prior and posterior distributions of monthly transition probabilities between states of human papillomavirus 16 (HPV-16) infec-

tion (note some axis limits are extended) compared with scenarios from Jit and others.11 The darkness of each strip is proportional to the

posterior density, fading to white at zero density, with 95% credible limits. CIN, cervical intraepithelial neoplasia.
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definition, as a deterministic or random function of
its parent parameters, corresponds to a language
statement. For example, the definitions of yk and
pDðtkÞ in ‘‘Direct Acyclic Graphs’’ are written as

for (k in 1:Nage){
y[k] ~ dbin(pD[k], n[k])
pD[k]\- pH[k] 1 pFP*(1 - pH[k])

}

The software then constructs the graphical model
internally and chooses and implements appropriate
methods to draw random numbers from the full-con-
ditional distribution of each node. An extensive
guide to Bayesian modeling using the BUGS language
and software is given by Lunn et al.,29 and Welton
et al.16 give a practical guide to its use in health deci-
sion modeling. The full BUGS model code represent-
ing the definitions in this example is provided in an
online supplement. For this application, we use the
JAGS software for BUGS language interpretation
and computation.33 Implementation in WinBUGS or
OpenBUGS32 would have been equally feasible.

MODEL CHECKING AND SENSITIVITY
ANALYSIS

Although a Bayesian graphical model is a natural
framework for evidence synthesis, it can still involve
many assumptions that should be questioned.

� A model can be assessed by checking and comparing
the fit of model predictions to the data used to build
it,34 then improving the model if necessary (‘‘inter-
nal’’35 or ‘‘dependent’’36 validation).

� When more than 1 data set informs a quantity of inter-
est, any potential inconsistency or conflict must be
investigated.16,20

� We recommend that any relevant data are included in
the graphical model, rather than held back for exter-
nal validation. Judgment is needed here, since mod-
ifying the model to accommodate increasingly less
relevant evidence will make it increasingly cum-
bersome and prone to misspecification. If it is
uncertain whether some data are relevant, perhaps
due to differences in population characteristics or
clinical practice, sensitivity analysis should be
undertaken.

� When the evidence informing a particular part of the
model is weak, so that different reasonable choices
of prior distribution may affect the results, these
should be compared in sensitivity analysis. Sensitiv-
ity analyses may also show the relative influence of
the prior and the data on the conclusions.

� Relative fit between alternative Bayesian models can
be compared with the posterior mean deviance (as in
Presanis and others20) or the deviance information cri-
terion (DIC), which is an estimate of the ability to pre-
dict a replicate data set.37,38

Note that the Bayesian approach does not elimi-
nate the need for discrete sensitivity analyses for
the parts of the model that are poorly informed by
data, but the number of scenarios can be greatly
reduced if these are replaced wherever possible by
smooth priors, as in the HPV example.

In the next sections, we explain how these checks
were carried out in the example and led to refinements
of the model. In Figure 6, the prior and posterior distri-
butions of the 5 state progression and regression prob-
abilities are illustrated under the model as described,
with 4 other assumptions explained below. This also
shows the estimates from the scenarios considered in
Jit and others11—note that there are some extreme sce-
narios that are implausible and thus have negligible
weight in the posterior. The only substantial posterior
correlation ðr . 0:5Þ was between the progression/
regression probabilities to/from CIN3. The only sub-
stantial inverse correlation (r\ �0:5) was between
the CIN3!precancer and precancer!diagnosed can-
cer transition probabilities, due to there being few
observations in the precancer state.

Model Checking and Accommodating Conflicts

First, in the HPV example, we graphically compare
the posterior distribution for the cytological state
prevalences qþjk; q�jk with the corresponding observed
prevalences from the ARTISTIC data. The posterior
from the model as described so far (labeled conflicted
model) is estimated not only from ARTISTIC but also
from the national screening program through equa-
tion (1). Figure 7 illustrates that this model does not
fit the ARTISTIC data well, as the observed prevalen-
ces are only just within the 95% posterior credible
limits, both for women with and without HPV-16
diagnoses. This suggests that the ARTISTIC and
national data are providing conflicting information
to this part of the model, such that the 2 data sets do
not agree on the proportions of women in the same
age group being in various states.

We accommodate this conflict by assuming that
the odds of being in states CIN1 or higher for an
HPV-16–negative woman in the ARTISTIC data is
a constant multiplier of the corresponding odds in
the national data. This constant is estimated as part
of the model. This produces a much better fit in
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Figure 7 (model labeled base case). This supposes
that women selected for ARTISTIC have slightly dif-
ferent prevalences of non–HPV-16–related neoplasia
from the general population. The prevalences of
HPV-16–related disease might also be different, but
we assume these are the same given that the adjust-
ment we have made produces an adequate fit. All sub-
sequent results we present are from this model unless
stated otherwise. Both the progression probability to
CIN1 and the corresponding regression rate are
changed after resolving this conflict (Figure 6). Other
data sets are fitted reasonably well by the posterior
distributions (not shown).

Note that the posterior distributions for qþjk (bottom
half of Figure 7) are smooth functions of age, because
the prior information about these prevalences, which
comes indirectly from all other data sources in the
model via the Markov transition probabilities,

‘‘shrinks’’ each individual data point toward the
prior mean.

Sensitivity to Data Inclusion

There is also doubt about whether the national
screening data are worth including at all, given that
state prevalences by HPV-16 presence are observable
from ARTISTIC alone, and HPV-16 presence is not
recorded in the national data. Although including it
may improve the precision of inferences from ARTIS-
TIC alone, there is the risk of other implicit, conflict-
ing information ‘‘feeding back’’ through the graph
and affecting other parameter estimates, for example,
the HPV-16 prevalences. We therefore compare the
results under a third model (labeled no NHSCCSP
data), where these data and the HPV-16–negative
data from ARTISTIC (which are only required to

Figure 7 Prevalences of cervical dysplasia among women in ARTISTIC (2006) data by human papillomavirus 16 (HPV-16) diagnosis—

observed data and posterior distributions (median and 95% credible interval [CI]) under base case and conflicted models.
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understand the contribution of non–HPV-16–related
dysplasia to the prevalences of dysplasia in the
national data) are excluded. The estimated transition
probabilities do not substantially change (see Figure
6). However, the posterior distribution of the maxi-
mum HPV-16 prevalence (Figure 4) is shifted upward
by a couple percentage points, accounting better for
the observations from around age 20 years. This sug-
gests that the national data are feeding back to this
part of the model.

Since we would expect the national screening pro-
gram to better represent the distribution of states than
ARTISTIC, which is a smaller, regionally biased
sample of women consenting to participate, our
base case results are those that do include the
national data. In general, if the model is used to eval-
uate a policy for the population, any relevant full
population data should be included, particularly
since the highly selected populations typically
included in randomized trials may not represent
the patients of interest.

Sensitivity to Prior Assumptions

As well as the 2 alternative models that use the
national screening data differently, we performed
a further 2 sensitivity analyses. The first investigates
how much the posterior distributions of the transi-
tion probabilities were affected by the strong priors
compared with the data. We downweighted the con-
tribution of the prior distributions by making them
substantially weaker, arbitrarily multiplying their
variances by 10. Note that completely vague Uni-
form(0,1) priors on all probabilities were not practica-
ble, since they resulted in MCMC convergence
failure, but more important, they would not have
really represented our prior beliefs in this case—for
instance, values over 0.5 for the monthly progression
probability would be deemed highly unrealistic
beforehand. Under the weaker priors, the posterior
distributions of the CIN1!CIN2 and CIN2!CIN1
probabilities became more widely dispersed. The pos-
terior means of the other parameters were unchanged,
and the posterior variances were only slightly inflated,
suggesting that the stronger prior merely adds preci-
sion to the study data rather than shifting estimates
away from the data. The exception is the regression
rate from CIN1 to (CIN-free) HPV-16, where the study
data appear to support lower values of this probability
than the prior. The base case model compromises
between prior and data through Bayes’ theorem.

The other key uncertain parameters describe the
accuracy of the cytological screening tests. The

information about these came from a review of
a very heterogeneous range of studies. Therefore,
we performed another analysis in which all sensitiv-
ities and specificities are fixed at 100%, one of the
extreme scenarios considered in Jit and others.11

The posterior distributions for many of the transition
probabilities (Figure 6) changed, confirming that they
are sensitive to the screening accuracies. In particu-
lar, the posterior variances are smaller when these
probabilities are fixed. The fit of this model is also
much poorer than the base case, judging from DIC
and plots (not shown). Information about the screen-
ing accuracies also comes, very indirectly, from the
data (through Figure 3). This results in posteriors
(Figure 5) that are reasonably precise compared
with the diffuse priors and indicate the strength of
evidence in the data for each value within the prior
bounds. There is a moderate posterior correlation
ðr 5 0:43Þ between the sensitivity and specificity of
detecting CIN1 but no other notable correlation. The
specificity of the test to identify HPV-16 DNA had
been given a fairly strong prior (median 0.9975%),
which is slightly modified by the data (posterior
median 0.9984%).

DISCUSSION

Bayesian graphical modeling is a useful frame-
work for including all policy-relevant evidence in
a decision model, even evidence that is only
indirectly related to the main parameters. We have
outlined the key steps of this approach and demon-
strated how we used it to obtain posterior distribu-
tions for progression and regression probabilities of
HPV-16–related cervical neoplasia. The posterior
gives a more accurate reflection of the available evi-
dence than the scenario analyses used in previous
HPV models, by also including the evidence about
how plausible each scenario was and reducing bias
due to ignoring some parameter uncertainties. A sin-
gle posterior distribution is also easier to interpret.

These methods are complex, but necessarily so in
the HPV example, and only require a similar amount
of programming to the original implementation. The
principles of Bayesian statistical modeling are widely
applicable in health policy evaluation.16,17 The
BUGS language and software can provide the poste-
rior distribution of any Bayesian model in principle,
although models with very large numbers of
unknowns, such as this one, require custom exten-
sions to the software to be written in more low-level
programming languages. Whyte and others21 also
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describe a similar implementation of a Bayesian
health economic model using Visual Basic within
Excel.

The HPV model could be extended as in Jit and
others10,23 to incorporate an infection and economic
model to evaluate policies for HPV vaccination.
This was originally based on more than a thousand
alternative scenarios that met a certain standard of
fit but with no measure of relative plausibility
between them. A Bayesian reimplementation to
formally characterize this uncertainty would be
expected to have a similar computational burden to
the original approach, as was the case for the
progression-only component. However, this is likely
to raise more uncertainties due to weak evidence
(e.g., about transmission, infection, and natural clear-
ance) and potential conflicts with other data sources
in the model. It is therefore unclear how much benefit
would be gained from greater statistical formality in
this example. As a graphical model becomes more
complex, there is greater potential for erroneous
information from one part of the model to indirectly
give bias in another part. There is ongoing research
on controlling the propagation of information in
graphs through restrictions variously termed ‘‘cutting
feedback’’39 and ‘‘modularization.’’40

No statistical method can eliminate uncertainty in
a model, since evidence is always limited. A decision
model should synthesize all relevant evidence, but
judgments must always be made about what evidence
is sufficiently relevant or strong. Potential conflicts
between 2 sources of data on the same quantity
should be investigated and explained, leading to
refinements in the model.20 In general, for more com-
plex models, careful validation and sensitivity analy-
sis become more important (see ‘‘Model Checking
and Sensitivity Analysis’’). This was demonstrated
in the HPV example, where, after examining plots
of model fit, some model assumptions were relaxed
to accommodate the population screening data.

Weak evidence about some component of a Bayes-
ian model will result in sensitivity of the results to the
prior distribution. Conversely, if prior sensitivity is
detected, this indicates areas where stronger data or
further research are required. In the HPV model, for
example, there was substantial uncertainty around
the accuracy of cervical screening. Although the
prior that we used was based on the best available
information, sensitivity analysis showed that these
parameters were influential. Although a posterior
distribution gives a better representation of the data
than a range of scenarios, a limited number of sensi-
tivity analyses are still useful to show how the results

would be affected if the evidence were to change. If
this model had been employed for decision making,
formal ‘‘value of information’’ methods (see, e.g.,
Welton and others41) could be used to predict for
which parameters more research would give the
greatest expected benefits.
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