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SUMMARY

Increasingly complex models are being used to evaluate the cost-e�ectiveness of medical interventions.
We describe the multiple sources of uncertainty that are relevant to such models, and their relation
to either probabilistic or deterministic sensitivity analysis. A Bayesian approach appears natural in this
context. We explore how sensitivity analysis to patient heterogeneity and parameter uncertainty can be
simultaneously investigated, and illustrate the necessary computation when expected costs and bene�ts
can be calculated in closed form, such as in discrete-time discrete-state Markov models. Information
about parameters can either be expressed as a prior distribution, or derived as a posterior distribution
given a generalized synthesis of available data in which multiple sources of evidence can be di�eren-
tially weighted according to their assumed quality. The resulting joint posterior distributions on costs
and bene�ts can then provide inferences on incremental cost-e�ectiveness, best presented as posterior
distributions over net-bene�t and cost-e�ectiveness acceptability curves. These ideas are illustrated with
a detailed running example concerning the cost-e�ectiveness of hip prostheses in di�erent age–sex sub-
groups. All computations are carried out using freely available software for conducting Markov chain
Monte Carlo analysis. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is being increasingly recognized that rational health-care policy can use cost-e�ectiveness
analysis to inform decisions. It is also clear that multiple sources of uncertainty should be
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acknowledged, and in this paper we bring together four diverse but converging themes into a
common framework:

1. complex cost-e�ectiveness models, in particular discrete-state discrete-time Markov mod-
els, which are being increasingly used to make predictions of the consequences of a
particular intervention;

2. probabilistic sensitivity analysis in cost-e�ectiveness, in which distributions are put over
uncertain parameters;

3. Bayesian approaches to cost-e�ectiveness, in particular using Markov chain
Monte Carlo (MCMC) methods, to incorporate evidence from a single source (e.g.
data arising from a clinical trial) with appropriate propagation of parameter un-
certainty;

4. the synthesis of evidence from multiple sources in a form of generalized meta-analysis.
There will usually be insu�cient randomized evidence to fully inform a model that
takes into account long-term consequences of an intervention. A generalized synthe-
sis would allow the use of evidence from studies of di�erent designs, possibly in-
cluding the controversial practice of combining randomized and non-randomized
evidence.

The combined literature on these topics is becoming large and only selected references
will be provided. Of particular note, however, is the review by Briggs [1] which introduces
many of the issues in this paper in a non-technical style. We also note the special issue on
Bayesian methods of the International Journal of Health Technology Assessment in Health
Care which features many relevant articles [2].
The structure of the paper is as follows. Section 2 describes a general framework for

describing and handling uncertainty in complex cost-e�ectiveness models, closely related to
the categorization suggested by the U.S. Panel on Cost-E�ectiveness [3], while Section 3
introduces the problem of making predictions using discrete-time cost-e�ectiveness models
allowing for heterogeneous populations. Closed-form and simulation solutions are described,
and illustrated in Section 4 with a reworking of an example concerning hip replacements.
Probabilistic sensitivity analysis is described in Section 5 and illustrated with our running
example, emphasizing the computations necessary to produce a decomposition of total variance
into components attributable to heterogeneity and parameter uncertainty. Section 6 discusses
the integration of evidence from multiple sources, including randomized, single cohort and
registry data. In synthesizing this evidence, we include the option of formally downweighting
potentially biased studies; the degree of downweighting is a judgement that should be subject
to sensitivity analysis. The Bayesian probability model then results in a posterior distribution
for the unknown parameters. This distribution then feeds into the probabilistic sensitivity anal-
ysis that underlies the incremental cost-e�ectiveness analysis described in Section 7. Finally,
in Section 8 we draw some conclusions concerning the potential for Bayesian approaches in
this context.
Each stage of this process is illustrated using the hip replacement example, and all com-

putations are carried out using the freely available software WinBUGS [4, 5]. We hope
that the provision of code (available on www.mrc-bsu.cam.ac.uk/bugs/examples) will help
practitioners to explore the potential of these methods.
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2. LEVELS OF UNCERTAINTY AND THEIR ROLE IN SENSITIVITY ANALYSIS

Approaches to uncertainty in cost-e�ectiveness analysis have been extensively reviewed by
Briggs and Gray [6], who emphasize the distinction between conducting ‘deterministic’ sen-
sitivity analysis in which inputs to the model are systematically varied within a reasonable
range, and ‘probabilistic’ sensitivity analysis in which the relative plausibility of unknown
parameters is taken into account.
We now relate these di�erent approaches to sensitivity analysis to di�erent sources of

uncertainty, relating our structure to the taxonomy described by Briggs [1] and the U.S. Panel
on Cost-E�ectiveness [3].

1. Chance variability: This is the unavoidable within-individual predictive uncertainty con-
cerning their speci�c outcomes or, equivalently, random variability in outcomes between
homogeneous individuals. We are usually not interested in this ‘�rst-order’ uncertainty
[1] since our focus is on the expected outcomes in homogeneous populations, but we
shall illustrate its calculation in Sections 3.2 and 4.3.

2. Heterogeneity: This source concerns between-individual variability in their expected
outcomes, either due to (a) identi�able subgroups of individuals with characteristics
such as age, sex and other covariates, or (b) unmeasurable di�erences (latent variables).
These are termed ‘patient characteristics’ by Briggs [1]. We shall generally want to use
deterministic sensitivity analysis to see how expected outcomes vary between identi�-
able subgroups, possibly followed by probabilistic averaging over population subgroups
according to their incidence.

3. Parameter uncertainty: This concerns within-model uncertainty as to the appropriate
values for parameters. Parameters can be separated into

(a) States-of-the-world, which could, in theory, be measured precisely if su�cient
evidence were available, for example risks, disease incidences and so on: these have
also been termed ‘parameters that could be sampled’ [1]. These can have distribu-
tions placed on them, corresponding to the ‘second-order’ uncertainty used in risk
analysis [7], and so be subject to probabilistic sensitivity analysis.

(b) Assumptions, which are quantitative judgements placed in the model that can only
be made precise through consensus agreement, for example discount rates. These can
be considered as one source of ‘methodological uncertainty’ [1], and sensitivity to
assumptions can only be carried out deterministically by re-running analyses under
di�erent scenarios.

The appropriate category for a quantity is not always clear. For example, whether
values placed on quality-of-life scales are states-of-the-world or assumptions is a contro-
versial point, and costs might also be placed in either category. If the costs are based
on explicit data, then we may be able to judge the error associated with the mean costs:
note that for both quality-of-life measures and costs it is the uncertainty about the mean
value that is of interest, not the variation in the patient population, which one might
expect to be considerable.

4. Ignorance: This describes our basic lack of knowledge concerning the appropriate qual-
itative structure of the model, for example, the dependence of the hazard rates on

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3687–3709
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background factors and history. This is also a component of ‘methodological uncertainty’
[1]. Sensitivity analysis takes the form of running through alternative models (determin-
istic), although there is an argument that model structure can itself be considered as an
unknown state-of-the-world and be subject to probabilistic sensitivity analysis [8].

In this paper, we shall primarily be concerned with probabilistic sensitivity analysis, although
we will also illustrate deterministic sensitivity analysis with respect to parameter assumptions.

3. COST AND EFFECTIVENESS MODELLING ALLOWING FOR CHANCE
VARIATION AND PATIENT HETEROGENEITY

3.1. Discrete-time discrete-state Markov models

Discrete-time discrete-state Markov models comprise a common framework for predicting
costs and bene�ts over time. These models assume that in each ‘cycle’ an individual is in
one of a �nite set of states, and that the chance of entering a new state at the end of the
cycle does not depend on what path the individual took to their current state (although it may
depend on the cycle and other developing risk factors). There are obviously many extensions
to this reasonably �exible framework [9, 10].
We shall �rst formally describe the generic structure of the model for a single homogeneous

set of patients with common parameters. Assume a discrete-time model comprising T cycles
labelled t=1; : : : ; T . Assume that within each cycle t a patient remains in one of K states,
and that all transitions occur at the start of each cycle. The probability distribution at the
start of the �rst cycle t=1 is represented by the row vector �1, and we assume a transition
matrix �t whose i, jth element is the probability of moving from state i to state j between
cycle t − 1 and t; thus the probability, for example, of being in state j during the second
cycle is

∑
i �1i�2; ij. Hence, the marginal probability distribution �t during cycle t¿1 obeys

the recursive relationship

�t = �t−1�t (1)

Suppose the cost, at current prices, of spending a cycle in state k is ck ; k=1; : : : ; K , and
there is a �xed entry cost c0. It is standard practice in economic evaluations to discount costs
that occur in future years, at rate 100�c per cent (say) per cycle. Then the total cost acquired
by each patient in the population is expected to be

E[C]= c0 +
T∑
t = 1

�tc′
(1 + �c)t−1

(2)

Similarly if the bene�ts of being in each state are given by a row vector b, discounted at rate
100�b per cent per cycle, the total expected bene�t for each patient is

E[B]=
T∑
t=1

�tb′
(1 + �b)t−1

(3)

We note that di�erent types of bene�t may be reported, for example both life expectancy and
quality-adjusted life-years.

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3687–3709
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Suppose there are S discrete subgroups labelled by s. The model described above can clearly
be extended to allow, say, for di�erent transition matrices within subgroups by extending the
notation to �st .

3.2. Making predictions in cost-e�ectiveness models

Let � represent state-of-the-world parameters in a cost-e�ectiveness model, say �1 and �t , and
let X be an unknown generic outcome of interest, whether a cost or a bene�t, taking on a value
x. Suppose, for a speci�ed value of � and subgroup s, we can specify a predictive distribution
p(x|s; �), the chance variability between future patients (Section 2). Our primary interest is
in E(X |s; �)= ∫

xp(x|s; �) dx=ms�, the expected outcome in this homogeneous population.
There are two means of determining expected costs and bene�ts:

1. Closed form: For the discrete-time, discrete-state Markov model described above the
expectations ms� are available in closed form, given by Equation (2) for costs and by
Equation (3) for bene�ts.

2. Simulation: If we are using a more complex model, such as a continuous time formula-
tion, then it may be necessary to simulate from p(x|s; �) and use the sample mean of the
simulations as an estimate of ms�. This does have the advantage of additionally giving
the whole distribution p(x|s; �), and in particular Var(X |s; �)= vs� among the population.
This ‘�rst-order simulation’ approach is illustrated by Briggs [1] and has been exploited
in the context of evaluating screening interventions using the term ‘micro-simulation’
[11].

For example, if we wished to explore this approach for the model described in
Section 3.1, then we could simulate a sequence of indicator arrays (representing the
state of the nth simulated patient at time t) as multinomial variables with order 1: i.e.

y(n)1 ∼multinomial(�1; 1)
y(n)t ∼multinomial(y(n)(t−1)�t ; 1); t=2; : : : ; T

(4)

Substituting y(n)t for �t into Equations (2) and (3) will give the total cost C(n) and
bene�t B(n) for the nth simulated patient, and averaging over patients (i.e. over iterations
n=1; : : : ; N ) gives Monte Carlo estimates of the required expectations m[C]s� and m

[B]
s� . We

may also calculate the variances of C(n) and B(n) across iterations to obtain Monte Carlo
estimates of v[C]s� and v[B]s� —i.e. the variability of each outcome due to chance.

4. ILLUSTRATIVE EXAMPLE: COST-EFFECTIVENESS ANALYSIS OF HIP
REPLACEMENT PROSTHESES

Our running example will concern the choice of prosthesis in total hip replacement: this is
a very common orthopaedic procedure with a substantial potential bene�t in terms of pain
relief and improved physical function. However, there is a wide range of products available
and being used, with limited evidence of their relative e�ectiveness, particularly in terms of
their revision rates for di�erent subpopulations. Since prostheses vary considerably in cost, the
National Institute of Clinical Evidence for England and Wales (NICE) has issued guidance
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Figure 1. Markov model for outcomes following primary total hip replacement.

as to the cost-e�ectiveness of di�erent types of prostheses [12], making substantial use of a
previous analysis presented by Fitzpatrick and colleagues [13].
Here, we use a model for outcome following hip replacement based on that of Fitzpatrick

[13] to illustrate a structured approach to the various sources of uncertainty, and use evidence
on relative revision rates for di�erent prostheses quoted in the NICE appraisal [12] to carry out
an incremental cost-e�ectiveness analysis. However, our purpose is in developing statistical
methodology, and so our results should not be taken as contributing in any way to guidance
as to an appropriate prosthesis: we refer to other publications for a detailed discussion of both
the clinical and economic issues [13–15].

4.1. Statistical model

Our model for predicting costs and bene�ts following hip replacement is a discrete-time,
discrete-state Markov model. The �rst cycle (t=1) is assumed to start immediately following
the primary total hip replacement (THR) operation; patients may either die at operation or
post-operatively, in which case they enter state 5 (death), otherwise they remain in state 1. In
subsequent cycles, surviving patients remain in state 1 until they either die from other causes
(progress to state 5) or their hip replacement fails and they require a revision THR operation.
Patients undergoing a revision operation enter one of two states depending on whether they die
post-operation (state 2) or survive (state 3). Surviving patients progress to state 4 (successful
revision THR) in the following cycle, unless they die from other causes (progress to state 5).
Patients in state 4 remain there until they either die from other causes (state 5) or require
another revision THR operation, in which case they progress back to states 2 or 3 as before.
We also assume a transition from states 2 to 5 in the cycle following operative death after a
revision THR. This is slightly arti�cial but is necessary to avoid multiple counting of revision
costs (see Equation (2)) if patients were to remain in state 2. Figure 1 illustrates the various
states and possible transitions between states.
Transitions between states are de�ned over a time frame (cycle length) of 1 year. The

vector of state probabilities in cycle t=1 is �1 = (1 − �op; 0; 0; 0; �op). We then consider a
further 59 cycles of the model, chosen to ensure that patients in the youngest age group at
t=1 should have died by the end of the full 60 cycles (years). The transition probability
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Table I. Age- and sex-speci�c mortality rates, and age and sex distribution of patients receiving primary
THR in the U.K.

Age (yr) Mortality rate % of THR recipients

Men Women Men (%) Women (%)

¡45 0.0017 0.0011 2 2
45–54 0.0044 0.0028 3 4
55–64 0.0138 0.0081 7 10
65–74 0.0379 0.0220 13 22
75–84 0.0912 0.0578 10 26
¿84 0.1958 0.1503 0 1

matrix for t=2; : : : ; 60 is given below, where �t; jk is the probability of being in state j in
year t − 1 and moving to state k at the start of year t, �op is the operative mortality rate, �t
is the hazard for revision in year t, �t is the mortality rate t years after primary operation,
and � is the re-revision rate which is assumed constant.

�=




1− �t − �t �op�t (1− �op)�t 0 �t
0 0 0 0 1
0 0 0 1− �t �t
0 ��op �(1− �op) 1− �− �t �t
0 0 0 0 1




4.2. Parameters of the model

We follow Fitzpatrick [13] in adopting the widely used Charnley prosthesis as a baseline
analysis, assumed to have a constant post-operative mortality rate, �op = 0:01, and a constant
re-revision rate, �=0:04. We also assume a linearly increasing revision hazard �t = h(t − 1)
(i.e. no replacements in �rst year), but unlike Fitzpatrick [13], we allow the annual increment
h to depend on the age and sex of the patient. On the basis of revision rates for the Charnley
prostheses in the Swedish hip replacement register [16], and assuming higher revision rates for
men and younger people [17], we take h=0:0022 for men ¡65 years, h=0:0017 for women
¡65 years, h=0:0016 for men ¿65 years and h=0:0012 for women ¿65 years. Finally, we
assume that patients surviving THR operations have the same mortality rates as the general
population, and use the national age- and sex-speci�c rates published by the U.K. O�ce for
National Statistics [12] and reproduced in Table I. Also shown in Table I is the age–sex
distribution of patients receiving primary THR using the Charnley prosthesis in the U.K. [12].
These data will be used in analyses allowing for patient heterogeneity (Section 5.1).

4.3. Costs and bene�ts

Estimates of the costs of a primary and revision THR operation using the Charnley prosthesis
were obtained from Fitzpatrick [13]. For a typical patient, primary THR costs are Cp =£4052,
and revision THR costs are CR =£5290, and we use an annual discount rate for costs occurring
in future years of �c=6 per cent per annum.

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3687–3709
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Health-related quality of life (HRQL) is measured by quality-adjusted life-years (QALYs)
based on the degree of severity of pain patients would be likely to experience in di�erent
states of the model. Based on results from a Canadian study [18], Fitzpatrick [13] assigns
values v1 = 1, v2 = 0:69, v3 = 0:38 and v4 = 0:19 for the HRQL of patients experiencing no,
mild, moderate or severe pain, respectively. Then they assume that after a successful THR
operation, 80 per cent of patients experience no pain and 20 per cent experience mild pain.
For patients whose hip replacements fail, they assume that 15 per cent experience severe
pain and 85 per cent experience moderate pain in the year preceding the year of the revision
operation, with a 50–50 split between those experiencing moderate pain and severe pain in
the year of operation. We, therefore, calculate QALYs for each state in our Markov model
as follows:

QALY1 = 0:8v1 + 0:2v2 = 0:938

QALY2 = 0 + 1:06× (0:85v3 + 0:14v4 − 0:8v1 − 0:2v2)= − 0:622
QALY3 = (v3 + v4)=2 + 1:06× (0:85v3 + 0:15v4 − 0:8v1 − 0:2v2)= − 0:337
QALY4 = 0:8v1 + 0:2v2 = 0:938

QALY5 = 0

We note the somewhat anomalous negative values for states 2 and 3, which represent a
subtraction of quality from the preceding year for patients requiring a revision operation. As
for costs, we discount QALYs (and also life expectancy) in future years at a rate of �b=6
per cent per annum: we note that a di�erent discount rate for bene�ts and costs may be a
more reasonable assumption [1] and we investigate sensitivity to this in Section 7.2.
The top section of Table II gives the expected costs and bene�ts for each subgroup, cal-

culated both in closed form and via Monte Carlo simulation. Monte Carlo estimates of the
chance variability are expressed by the sampling standard deviations of these costs and ben-
e�ts. The simulation-based estimates of the expectations agree well with the exact results
within each subgroup, and the standard deviations show substantial variability between the
outcomes attained by individual patients. While the expected costs are reasonably constant
across subgroups, there is clear heterogeneity in expected bene�ts.
From now on we will calculate all expectations ms� in closed form, and so ignore the

‘�rst-order’ chance variability.

5. PROBABILISTIC SENSITIVITY ANALYSIS

In Section 2 we identi�ed two sources of uncertainty to which probabilistic sensitivity analysis
might be applied: population heterogeneity and parameter uncertainty. We shall consider each
in turn and then their simultaneous analysis.

5.1. Sensitivity to patient heterogeneity for �xed parameters �

Suppose we desired an overall measure of cost-e�ectiveness across an entire population, but
with a summary of the variability due to patient heterogeneity. We are willing at this stage
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Table II. Expected costs and bene�ts of THR for patient subgroups with �xed parameters
calculated both exactly and using Monte Carlo simulation, and (bottom three rows) overall,

allowing for subgroup heterogeneity with �xed parameters.

Costs Life expectancy QALYs
(£) (yr)

Exact Monte Carlo Exact Monte Carlo Exact Monte Carlo

Subgroup m[C]s� m[C]s�
√
v[C]s� m[L]s� m[L]s�

√
v[L]s� m[Q]s� m[Q]s�

√
v[Q]s�g

Men
35–44 yr 5781 5793 1892 14.5 14.5 2.9 13.2 13.2 2.6
45–54 yr 5417 5435 1889 12.7 12.7 3.4 11.6 11.6 3.0
55–64 yr 4989 4974 1659 10.3 10.3 3.7 9.5 9.5 3.3
65–74 yr 4466 4454 1211 7.7 7.7 3.5 7.2 7.2 3.2
75–84 yr 4263 4250 905 5.4 5.4 3.0 5.0 5.1 2.8
¿84 yr 4193 4203 806 4.1 4.1 3.0 3.8 3.9 2.7

Women
35–44 yr 5626 5641 1835 15.1 15.2 2.6 13.8 13.8 2.4
45–54 yr 5350 5346 1765 13.7 13.7 3.0 12.5 12.6 2.8
55–64 yr 5002 5020 1666 11.6 11.6 3.6 10.7 10.7 3.2
65–74 yr 4487 4484 1242 9.1 9.0 3.7 8.4 8.4 3.4
75–84 yr 4282 4277 955 6.5 6.4 3.3 6.0 6.0 3.1
¿84 yr 4212 4209 812 5.0 5.0 3.4 4.6 4.6 3.2

Exact Monte Carlo Exact Monte Carlo Exact Monte Carlo

Overall
Mean, m� 4603 4600 8.7 8.7 8.0 8.0
SD,

√
v� 403 409 2.6 2.6 2.3 2.3

CV=
√
v�=m� 0.09 0.09 0.30 0.30 0.29 0.29

Note: The third column for each outcome gives the sampling standard deviation in that outcome,
estimated using Monte Carlo integration.

to consider the parameters � of the model to be known. Allowing s to have a distribution
p(s|�) provides

Es|�[ms�] =m�

Vars|�[ms�] = v�

where Es|� represents an expectation with respect to the distribution of s for �xed �. Thus,
m� and v� are the mean and variance of the expected outcomes over the subpopulations, for
�xed �. If ms� is available in closed form for each of a �nite set of subgroups, then m� and
v� may be obtained by direct calculation.
Example: For the hip prosthesis example, the subpopulations S comprise the age–sex groups

as shown in Table I. Calculation of m� and v� can then be performed by computing the
weighted mean and variance of either the closed form or the Monte Carlo expectations for
each subgroup, where the weights are given by the subgroup percentages in Table I. The �nal

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3687–3709
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three rows of Table II give, respectively, m�,
√
v� and the coe�cient of variation

√
v�=m� for

each of the three outcomes of interest; these summarize the expected costs and bene�ts of
THR and their variability across patient subgroups. As informally noted before, these measures
emphasize the reasonable consistency of costs but the substantial variability of bene�ts across
population subgroups.

5.2. Sensitivity to uncertain parameters for a �xed patient subgroup s

We now consider a contrasting situation in which we are concerned with individual sub-
groups but wish to summarize the consequences of parameter uncertainty. Allowing � to have
distribution p(�|s) within each subgroup s provides

E�|s[ms�] =ms

Var�|s[ms�] = vs

where E�|s represents an expectation with respect to the distribution of � for a given sub-
group s. Thus ms and vs are the mean and variance of the expected outcomes for speci�c
sub-populations allowing for uncertainty in �.
Assuming ms� is available in closed form, ms and vs can be estimated by simulating values

of � from p(�|s), evaluating ms� and taking the sample mean and variance over �. This is
a natural application of Monte Carlo methods to deal with ‘second-order uncertainty’ in homo-
geneous populations, which has become a standard tool in risk analysis. It is implementable
as macros for Excel, either from commercial software such as @RISK [19] and Crystal Ball
[20], or self-written. Here, however, we use the freely available WinBUGS software [4] in
order to facilitate extensions to include evidence synthesis (Section 6).
Application of these techniques to our example is described in Sections 5.3 and 5.4 and is

shown in Table III.

5.3. Joint sensitivity to uncertain parameters and heterogeneity

When we wish to simultaneously investigate sensitivity to both heterogeneity and parameter
uncertainty, then we need to consider the joint distribution p(s; �) which provides summary
statistics

Es�[ms�] =m

Vars�[ms�] = v
(5)

that quantify the expectation and variance of the outcome over patient subgroups and plausible
parameter values.
The overall summaries m and v can be obtained in two ways, corresponding to expressing

p(s; �) as p(s|�)p(�) or as p(�|s)p(s).
1. We might condition on the parameters and average over the subgroups with respect
to p(s|�) (as in Section 5.1) followed by simulating from the uncertain p(�). This
is perhaps a natural order when the behaviour of individual subgroups is considered
unimportant.
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Table III. Expectation and standard deviation of costs and bene�ts of THR for patient
subgroups allowing for parameter uncertainty, and (bottom two panels) overall, allowing

for parameter uncertainty and patient heterogeneity.

Costs Life expectancy QALYs
(£) (yr)

Subgroup m[C]s
√
v[C]s m[L]s

√
v[L]s m[Q]s

√
v[Q]s

Men
35–44 yr 5787 231 14.5 0.0052 13.2 0.060
45–54 yr 5425 202 12.7 0.0037 11.6 0.052
55–64 yr 4997 152 10.3 0.0021 9.5 0.038
65–74 yr 4472 75 7.7 0.0008 7.2 0.019
75–84 yr 4266 40 5.4 0.0003 5.0 0.010
¿84 yr 4196 27 4.1 0.0002 3.8 0.007

Women
35–44 yr 5636 218 15.1 0.0052 13.8 0.057
45–54 yr 5359 194 13.7 0.0038 12.5 0.050
55–64 yr 5010 154 11.7 0.0024 10.7 0.039
65–74 yr 4493 79 9.1 0.0010 8.4 0.020
75–84 yr 4285 44 6.5 0.0004 6.0 0.011
¿84 yr 4215 31 5.0 0.0003 4.6 0.008

Overall (using p(s; �) = p(s|�)p(�))
Overall expectation m 4609 8.7 8.0
Var. due to uncertainty, vP1 =Var�[m�] 1013 0.0000002 0.00006
Var. due to heterogeneity, vH1 =E�[v�] 174 400 6.7 5.5
Total variance v1 = vP1 + vH1 175 413 6.7000002 5.50006
Percentage variance due to heterogeneity 99.4% 99.9% 99.9%

Overall (using p(s; �)=p(�|s)p(s))
Overall expectation m 4609 8.7 8.0
Var. due to uncertainty, vP2 =Es[vs] 11 473 0.000003 0.0007
Var. due to heterogeneity, vH2 =Vars[ms] 163 953 6.7 5.5
Total variance v2 = vP2 + vH2 175 426 6.700003 5.5007
Percentage variance due to heterogeneity 93.5% 99.9% 99.9%

Then, we obtain from standard identities

m= E�[Es|�[ms�]]=E�[m�]
v= E�[Vars|�[ms�]] + Var�[Es|�[ms�]]=E�[v�] + Var�[m�]= vH1 + vP1

(6)

The latter can be considered as a decomposition of the total variance v in expected
outcome into two components corresponding to patient heterogeneity (vH1) and parameter
uncertainty (vP1), respectively. Since we are assuming m� and v� can be obtained in closed
form, the decomposition can be obtained using Monte Carlo estimates of the required
quantities.

2. When individual subgroups are of more importance, it is natural to �rst condition on the
subgroups and simulate parameters from p(�|s) (as in Section 5.2) followed by averaging
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with respect to p(s). Then, we obtain

m= Es[E�|s[m�|s]]=Es[ms]

v= Es[Var�|s[m�|s]] + Vars[E�|s[m�|s]]=Es[vs] + Vars[ms]= vP2 + vH2
(7)

This �nal decomposition of the total variance v in expected outcome into components
corresponding to parameter uncertainty (vP2) and heterogeneity (vH2) is illustrated in
Section 5.4. Making our standard assumptions, ms and vs may be obtained from Monte
Carlo estimates, while vP2 and vH2 are calculated directly from the ms and vs using the
discrete prior p(s). Thus, the percentage of variability due to the two sources can be
calculated.

The second approach would appear to be most commonly relevant, although we illustrate both
approaches in our example below.

5.4. Example: sensitivity to heterogeneity and parameter uncertainty

One relevant state-of-the-world parameter in our model for prognosis following THR is the
revision hazard h. It may be reasonable to assume uncertainty of ±50 per cent about our
assumed revision hazards (which we now denote h0) for each age and sex group. This gives
an approximate 95 per cent interval of (h0t=1:5, h0t × 1:5) for the revision hazard, which we
represent as a normal distribution for the log hazard

log h∼N (log h0; 0:22) (8)

The top part of Table III gives the expectation ms and standard deviation
√
vs of the costs and

bene�ts for each subgroup, allowing for uncertainty in the revision hazard (Section 5.2). The
bottom two panels of this table give the overall expectation and variance of each outcome
across subgroups and the hazard distribution, evaluated using, respectively, Equations (6) and
(7), and taking both p(s) and p(s|�) equal to the age–sex distribution provided in Table I.
It is clear that even considerable uncertainty about revision hazard rates has little in�uence

on life expectancy or QALYs, but does lead to substantial sensitivity on costs. When combined
with the in�uence of heterogeneity, parameter uncertainty is only responsible for 6.5 per cent
or less of the total variance for costs and less than 0.01 per cent of the total variance for
bene�ts.

5.5. If closed-form expectations are not available

Although not relevant to our example, it is important to realize that closed-form expectations
may not be available in more complex models and a micro-simulation approach may be
necessary (Section 3.2) in which individual patient outcomes are simulated. We brie�y discuss
the necessary computations, assuming a single subgroup (no heterogeneity).
A time-consuming nested simulation procedure [21] is required. A value �j for � is sim-

ulated from p(�), followed by simulation of M (where M is large) values of the outcome
X j
1 ; : : : ; X

j
M conditional on �j. The sample mean �X j

M and variance V jM are stored. Over many
simulations of �, monitoring any Xi will provide the overall expectation m and variance v for
a single individual, although the variance combines both parameter uncertainty and chance
variability and will generally be of little interest. Monitoring �XM and VM will, however, allow
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estimation of the components of the overall variability, since Var�[ �XM ] ≈ vP will estimate
variability due to parameter uncertainty, while E�[VM ] gives that due to chance variability.
However, this technique will be laborious, particularly when heterogeneity is present. See
Reference [11] for an application.

6. INTEGRATING EVIDENCE WITH THE MODEL

6.1. Generalized meta-analysis of evidence

Up until now we have assumed that any available evidence (e.g. on the revision hazard)
can be summarized as a prior distribution whose in�uence is assessed by propagating uncer-
tainty through the model using ‘forward’ Monte Carlo methods. This two-stage process can be
integrated into a single analysis in which the posterior distribution arising from a data analysis
feeds directly into the cost-e�ectiveness without an intermediate summary step. This corre-
sponds to a full Bayesian probability model and requires Markov chain Monte Carlo rather
than simply Monte Carlo techniques, since in e�ect the evidence from the data has to be prop-
agated ‘backwards’ in order to give the uncertainty on the parameters, and then ‘forwards’
through the cost-e�ectiveness model. A schematic representation is shown in Figure 2.
O’Hagan and colleagues [22–24] have illustrated this technique for evidence from a single

trial and a simple cost-e�ectiveness model, while Fryback and colleagues [25] provide a further
example of a posterior distribution being used as a direct input to probabilistic sensitivity
analysis. The potential advantages of this integrated approach over the two-stage process are
discussed in Section 6.3.
The common situation in which evidence is available from a variety of sources demands

a more challenging statistical analysis. If the evidence comprises a set of similar trials, then

Figure 2. Schematic graph showing the dependence of both available evidence and future predictions
on unknown parameters. After taking into account the available evidence, initial prior opinions on the
parameters are revised by Bayes theorem to posterior distributions, the e�ects of which are propagated
through the cost-e�ectiveness model in order to make predictions. An integrated Bayesian approach

ensures that the full joint uncertainty concerning the parameters is taken into account.
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a standard Bayesian random-e�ects meta-analysis may be su�cient [26, 27]. In more complex
situations there will be multiple studies with relevance to the quantities in question but which
may su�er from a range of potential inadequacies, such as being based on di�erent popula-
tions, having non-randomized control groups, outcomes measured on di�erent scales, and so
on. Formal combination of such disparate sources is fraught with methodological problems
but has been studied under a range of labels. Cross-design synthesis [28] is a general term for
pooling evidence from di�erent study designs, while the Con�dence Pro�le Method of Eddy
and colleagues [29] explicitly models a range of internal and external biases that a study may
exhibit. It is natural to extend Bayesian random-e�ects modelling to allow variance compo-
nents corresponding to di�erent study designs (i.e. assuming study types are ‘exchangeable’)
resulting in hierarchical models with a study-type ‘level’: examples include pooling random-
ized and non-randomized studies on breast cancer screening [30], and pooling open- and
closed-trial designs [31, 32].
There are clearly a number of issues in carrying out such potentially controversial modelling,

such as when to judge studies or study-types ‘exchangeable’, how to put appropriate prior
distributions on variance components, and how to carry out sensitivity analyses.
We shall consider as an illustration a somewhat simple formulation of such a model. Sup-

pose we have a set of studies that are each intending to estimate a single parameter � but,
due to di�erences in populations studied and so on, any particular study (if carried out metic-
ulously) would in fact be estimating a biased parameter �+�h. Here �h is the ‘external bias’,
and a standard random e�ects formulation might then assume �h∼N (0; �2h ) (note that the
mean would not necessarily be 0 if we suspected systematic bias in one direction). How-
ever, suppose that due to quality limitations there is additional ‘internal bias’ in the study, so
that the true parameter being estimated is �+ �h + �b. Then we might assume �b∼N (0; �2b )
if we did not suspect the internal bias would favour one or the other treatment. Overall,
we are left with a random e�ects model in which, for study i, the data is estimating a
parameter

�i ∼N (�; �2h + �2bi)
∼N (�; �2h =qi)

where qi=�2h =(�
2
bi+�

2
h ) can be considered the ‘quality weight’ for each study, being the pro-

portion of between-study variability unrelated to internal biasing factors. Thus, a high-quality
randomized trial might have q=1, while a non-randomized study may be downweighted by
assigning q=0:1.
Estimates or prior distributions of the between-study variance �2h and the quality weights qi

might be obtained from a possible combination of empirical random-e�ects analyses of RCTs
of this intervention, historical ‘similar’ case studies, and judgement. Of course, sensitivity
analysis to a range of assumptions about the quality weights can be carried out, as illustrated
in the following example.

6.2. Example: evidence synthesis for comparison of revision rates

In order to illustrate the trade-o� between increased costs and bene�ts, we shall compare the
cost-e�ectiveness of the Charnley prosthesis with a hypothetical alternative cemented prosthe-
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Table IV. Summary of evidence on revision hazards for Charnley and Stanmore prostheses:
hazard ratios¡1 are in favour of Stanmore.

Charnley Stanmore Estimated

Number of Revision Number of Revision hazard ratio
patients rate patients rate (HR) (95% int.)

Source

Fixed-e�ects model
Registry 28 525 5.9% 865 3.2% 0.55 (0.37–0.77)
RCT 200 3.5% 213 4.0% 1.34 (0.45–3.46)
Case series 208 16.0% 982 7.0% 0.44 (0.28–0.66)

Common-e�ect model
0.52 (0.39–0.67)

Quality weights [registry, RCT, case series] Random-e�ects model
[1; 1; 1] 0.54 (0.37–0.78)

[0:5; 1; 0:2] 0.61 (0.36–0.98)
[0:1; 1; 0:05] 0.82 (0.36–1.67)

ses costing an extra £350 but with some evidence for lower revision rates. We assume that
all other costs (operating sta�=theatre costs, length of hospital stay, X-rays, etc.) are the same
for both prosthesis types, and that the same method of QALY assessment is applicable for
both types of prosthesis.
For illustration, we assume that the revision hazard for our hypothetical alternative is similar

to that for the Stanmore prostheses (a popular alternative to the Charnley in practice). Evidence
on the relative revision hazards for the two prostheses is limited. The report by NICE on the
cost-e�ectiveness of di�erent prostheses for THR [12] cites three sources providing direct
comparisons between Charnley and Stanmore revision rates:

1. The Swedish Hip Registry [17] provides non-randomized data submitted from all hospi-
tals in Sweden from 1979, with record linkage to further procedures and death. Nine-year
follow-up results are used for around 30 000 Charnley and Stanmore prostheses.

2. A U.K. Randomized Controlled Trial (RCT) [33] randomized around 400 patients to
Charnley or Stanmore and reported a mean follow-up of 6.5 years.

3. A Case Series [34] of around 1200 patients in a single hospital with a mean follow-up
of 8 years.

The available evidence from these three sources on revision hazards for Charnley and Stanmore
prostheses is summarized in Table IV.
We assume the following model for pooling evidence on the revision hazard ratio for Stan-

more versus Charnley prostheses. Let Nik and rik denote the total number of patients receiving
prosthesis i (1=Charnley, 2=Stanmore) in study k, and the number requiring a revision op-
eration, respectively. We assume rik is binomially distributed with proportion pik , and Hik is
the cumulative hazard up to the mean follow-up, so that log(− log(1 − pik))= logHik . As-
suming a proportional hazards model, with hazard ratio HRk for Stanmore versus Charnley
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prostheses, leads to the following likelihood:

rik∼Binomial(pik ; Nik); i=1; 2

log(− log(1− p1k))= logH1k
log(− log(1− p2k))= logH2k = logH1k + logHRk

Placing uniform prior distributions over logH1k and HRk gives the ‘�xed-e�ects’ estimates
of the hazard ratio for each source shown in the �rst three rows of Table IV, revealing
reasonable concordance between the non-randomized studies but with the randomized trial
showing some evidence against the Stanmore. Forcing a common hazard ratio leads to the
registry overwhelming the other sources (row 4 of Table IV).
The random-e�ects analysis with quality weights described in Section 6.1 leads to the model

logHRk ∼N
(
logHR;

�2h
qk

)

where HR is the overall estimate of the revision hazard ratio pooled across studies.
Three studies do not provide su�cient evidence to accurately estimate the between-study

standard deviation �h, and so substantial prior judgement is necessary. We would expect con-
siderable heterogeneity in revision rates between studies, even if they are internally unbiased,
and so assume that �h has a normal distribution with mean 0.2 and standard deviation 0.05,
corresponding to expecting ±50 per cent variability in true hazard ratios between studies, with
95 per cent uncertainty limits of 20–80 per cent variability. The results of a random-e�ects
analysis with all quality weights assumed to be 1 are shown in row 5 of Table IV, again
showing the domination of the registry data.
Our knowledge of the potential biases of registries and case series suggest downweighting

the non-randomized evidence. As a baseline assumption for the quality weights, we take qk
equal to 0.5, 1.0 and 0.2, respectively, for the registry, RCT and case series studies. This
corresponds to assuming that ‘bias’ in the registry and case series studies leads to a 2-fold
or 5-fold increase in the revision rate variance, respectively, over and above the between-
study variability expected for RCTs. Row 6 of Table IV shows that the hazard ratio is still
estimated in favour of the Stanmore but that the 95 per cent interval now only just excludes
1. As a further sensitivity analysis, we take qk equal to 0.1, 1.0 and 0.05, respectively, which
leads to an equivocal result with substantial uncertainty (�nal row of Table IV).

6.3. Comparison of integrated Bayesian and two-stage approach

The ‘integrated’ approach to evidence synthesis and cost-e�ectiveness analysis simultaneously
derives the joint posterior distribution of all unknown parameters from a Bayesian probability
model, and propagates the e�ects of the resulting uncertainty through the predictive model
underlying the cost-e�ectiveness analysis. In contrast, the ‘two-stage’ approach would �rst
carry out the evidence synthesis, summarizing the joint posterior distribution parametrically,
and then in a separate analysis use this as a prior distribution in a probabilistic sensitivity
analysis in the cost-e�ectiveness model.
Advantages of the integrated approach include the following. First, there is no need to

assume parametric distributional shapes for the posterior probability distributions, which may
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be important for inferences for smaller samples. Second, and perhaps most important, the
appropriate probabilistic dependence between unknown quantities is propagated [35], rather
than assuming either independence or being forced into, for example, multivariate normality.
This can be particularly vital when propagating inferences which are likely to be strongly
correlated, say when considering both baseline levels and treatment di�erences estimated from
the same studies.
The disadvantages of the integrated approach are its additional complexity and the need

for full Markov chain Monte Carlo software. The ‘two-stage’ approach, in contrast, might be
implemented in a combination of standard statistical and spreadsheet programs.

7. INCREMENTAL COST-EFFECTIVENESS

7.1. Theory

Suppose we have cost-e�ectiveness models for two interventions. For �xed parameter values,
let the expected outcomes for intervention i=1; 2 decompose into expected costs and bene�ts
m�i=(m

[C]
�i ; m

[B]
�i ). Then the incremental expected costs and bene�ts of intervention 2 over

intervention 1 are IC�=m
[C]
�2 −m[C]�1 and IB�=m

[B]
�2 −m[B]�1 . Many authors [36–39, 22, 25] have

argued that statements of cost-e�ectiveness should be based on the joint distribution of IC�
and IB� with respect to p(�), the joint distribution for all uncertain parameters in the models.
In particular, a plot of the joint distribution of IC� and IB� can be particularly informative.
A traditional summary of the comparison between two treatments is the incremental cost-

e�ectiveness ratio (ICER) IC�=IB� which, for �xed �, is the expected additional cost per
unit additional bene�t. However, when uncertainty about � is acknowledged, inference on the
ICER is hampered by the possibility that IB� = 0, and hence the ICER is in�nite. A solution
is to use the concepts of ‘net bene�t’ and ‘cost-e�ectiveness acceptability curves’.
For example, suppose K is a given threshold cost per unit bene�t, in that the health-care

provider is willing to pay up to K for an additional unit of bene�t. Then, for �xed parameters
�, the net bene�t from the new intervention is

��(K)=K IB� − IC�
The distribution of ��(K) for �xed K provides a variety of summary measures [23]. For
example, E�[��(K)] is the expected net bene�t, and Claxton [40] argues that intervention
2 should be chosen if this expectation is positive, without regard to ‘statistical signi�cance’.
Perhaps a more �exible approach is to calculate Q(K)=p�[��(K)¿0], and plot this against K
to produce a cost-e�ectiveness acceptability curve (CEAC). Further discussion and examples
of these concepts have been provided by others [36–39, 22, 25].

7.2. Example: Comparative cost-e�ectiveness analysis of two di�erent hip prostheses

We now compare expected costs and bene�ts by running the Markov model for each of the
Charnley and Stanmore prostheses, with appropriate allowance for uncertainty and heterogene-
ity. As before, we assume the distribution given in Equation (8) for the Charnley prosthesis
hazard (now denoted h1); for the hypothetical alternative prosthesis we estimate the revi-
sion hazard as h2 = h1×HR, where the hazard ratio HR is estimated simultaneously with the
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Table V. Summary of results of comparative analysis of cost-e�ectiveness for a hypothetical alternative
versus the Charnley prostheses, using quality weights of [0:5; 1; 0:2] for weighting the registry, RCT

and case study evidence, respectively.

IC� (£) IQ� (QALYs) ICER

Subgroup Mean SD Mean SD Median Q(6000) Q(10 000)

Men
35–44 yr −90 256 0.136 0.063 −846 0.92 0.94
45–54 yr −28 216 0.113 0.053 −457 0.91 0.93
55–64 yr 71 156 0.081 0.038 581 0.87 0.92
65–74 yr 216 75 0.038 0.018 5190 0.55 0.77
75–84 yr 279 40 0.020 0.009 13 220 0.04 0.26
¿84 yr 303 26 0.013 0.006 21 830 0.00 0.02

Women
35–44 yr −63 238 0.127 0.059 −691 0.91 0.94
45–54 yr −14 206 0.109 0.051 −349 0.90 0.93
55–64 yr 66 161 0.083 0.039 537 0.87 0.92
65–74 yr 209 79 0.040 0.019 4710 0.60 0.80
75–84 yr 274 43 0.021 0.010 12 030 0.07 0.34
¿84 yr 297 28 0.015 0.007 18 790 0.00 0.06

Overall 183 90 0.048 0.022 3246 0.73 0.85

Markov model using the model for evidence synthesis based on comparison of Charnley and
Stanmore revision rates described in Section 6.2.
Table V summarizes the expectation and variability due to parameter uncertainty of the

incremental costs (IC�=m
[C]
�2 −m[C]�1 ) and quality of life bene�ts (IQ�=m[Q]�2 −m[Q]�1 ) of using

the alternative prosthesis rather than the Charnley both for speci�c patient subgroups and
also averaged over all patients. Note that similar summaries are possible for life expectancy.
Table V also gives the median of the distribution of the incremental cost-e�ectiveness ratio
(ICER= IC�=IQ�): note the preceding discussion on the di�culty of giving interval estimates
for this quantity when IQ�=0 is a plausible value. The additional bene�t from the alterna-
tive prostheses clearly decreases with increasing age, while the expected cost changes from
favouring the alternative to favouring Charnley with increasing age. This leads to a negative
ICER for younger ages.
The full joint distribution of IC� and IQ� is shown in Figure 3 for each subgroup and

averaged over all patients. Values within the bottom right quadrant indicate both lower cost
and greater bene�t arising from the alternative prosthesis, and hence a strictly dominating
intervention. The diagonal dashed line in each plot indicates the pairs of values of IC� and
IQ� yielding a zero expected net bene�t for Stanmore if the health-care provider is willing to
pay up to K =£6000 for each additional QALY of bene�t (i.e. ��(6000)=0); the proportion
of points in the joint distribution below this line represents the probability of cost-e�ectiveness
for the alternative prosthesis for K =£6000 (i.e. Q(6000)=p�[��(6000)¿0]). Likewise, the
diagonal dotted line represents pairs of values (IC�; IQ�) yielding a zero expected net bene�t
for K =£10 000 (i.e. ��(10 000)=0), and the proportion of points below the dotted line
correspond to Q(10 000), the probability of cost-e�ectiveness for the alternative prosthesis
at £10 000 per QALY. The cost-e�ectiveness probabilities Q(6000) and Q(10 000) for each
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Figure 3. Incremental HRQL bene�ts (IQ�) versus incremental costs (IC�) for the alternative versus
Charnley prostheses, for patient subgroups and overall (note that results for men aged ¿84 years
are not shown due to space limitations and because the distribution of patients over age–sex groups
shown in Table I indicates that there are no THR recipients in this subgroup). Diagonal lines indi-
cate zero expected net bene�t (��(K)=0) for the alternative prosthesis for K=£6000 (- - - - -) and

K=£10 000 (..........) per QALY.
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subgroup and averaged over all subgroups are summarized in the �nal two columns of Table
V. We see that, for K =£10 000, the probability that the alternative prosthesis is the cost-
e�ective option is around 80 per cent or more for both men and women under 75 years, but
declines rapidly thereafter. For K =£6000 the threshold is around 65 years.
Figure 4 shows Q(K), the probability of cost-e�ectiveness for the alternative prosthesis if the

health-care provider is willing to pay up to £K for each additional QALY of bene�t, plotted
against K for each subgroup and averaged over all subgroups. The solid line is based on the
results of the analysis reported above; the other curves in each plot indicate the sensitivity of
the cost-e�ectiveness probabilities to various model assumptions. Speci�cally, we have re-run
the model using downweighted evidence from the non-RCT studies on the revision hazard
ratio for Stanmore versus Charnley. This was achieved by using quality weights qs equal to
0.1, 1.0 and 0.05, respectively, for the registry, RCT and case series studies. Sensitivity to
the assumption that bene�ts are to be discounted by �b=6 per cent per annum was also
examined, by re-running the models using a reduced health discount rate of 1.5 per cent per
annum.
The results indicate that cost-e�ectiveness depends strongly on age (and to a lesser extent

on sex), which suggests that economic evaluations should be made separately for the di�erent
subgroups. However, there is considerable sensitivity to the choice of quality weights used in
the evidence synthesis, with further downweighting of the non-randomized evidence leading to
consistently lower cost-e�ectiveness probabilities for the alternative prosthesis in all age and
sex groups: the probability of cost-e�ectiveness does not rise above 75 per cent for any value
of K considered. This is to be expected, since the RCT provided less favourable evidence
of reduced revision rates for the alternative prosthesis than did the non-randomized studies.
Sensitivity to the health discount rate is not particularly strong in general, but is more apparent
for older age groups.
It is of interest to compare the two-stage approach, which separates the data analysis and

evidence synthesis from the cost-e�ectiveness analysis, to the integrated approach described
above (Section 6.3). We applied the two-stage approach using the three data sources (registry,
RCT and case series) to estimate the revision hazard for Charnley (rather than using the values
for h derived in Section 4.2) as well as the hazard ratio. Independent normal distributions
were then assumed for the log hazard for Charnley and for the log hazard ratio. The results
were virtually identical to the integrated analysis—the posterior standard deviations are about
1–2 per cent smaller under the two-stage approach and the CEA curves were very similar.
The correlation between the log hazard for Charnley and the hazard ratio is also quite small
(about −0:15) in the model, which would explain the similar results from the two approaches.

8. CONCLUSIONS

In this paper, we have attempted to explore a range of concerns that arise in cost-e�ectiveness
modelling, but acknowledge that there are a number of issues that we have passed over. In
particular, we have not explored the sensitivity of the conclusions to ‘ignorance’ about the
structure of the appropriate model as discussed in Section 2: alternative models that could be
used in this context include survival-type models with competing risks. It is vital to admit
that even a reasonably complex model, such as that investigated in our example, cannot be
assumed to be realistic and must be subject to careful criticism [41, 42].
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Figure 4. Probability of cost-e�ectiveness for the alternative prosthesis for each subgroup and overall,
versus cost (£K) that the health-care provider is willing to pay for each additional QALY of bene�t
(note that results for men aged ¿84 years are not shown due to space limitations and because the
distribution of patients over age–sex groups shown in Table I indicates that there are no THR recipients
in this subgroup). Results are shown for di�erent choices of quality weights qs for the registry, RCT
and case series studies, and di�erent health discount rates d, as follows: —— shows qs=(0:5; 1:0; 0:2)
and d=6 per cent; · · · · · · shows qs=(0:5; 1:0; 0:2) and d=1:5 per cent; - - - - shows qs=(0:1; 1:0; 0:05)

and d=6 per cent; – – – shows qs=(0:1; 1:0; 0:05) and d=1:5 per cent.
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As attempts are made towards evidence-based health policy in both clinical and public-health
contexts, models will inevitably become more complex and, while the methods described in
this paper may appear complicated, we feel that techniques such as these may well become
commonplace in the future. If decisions made with the help of such analyses are to be truly
accountable, it is important that the models and methods are transparent, easily updatable,
and can be run by many parties in order to check sensitivity. Models implemented in spread-
sheet programs have some of these characteristics, although personal experience suggests that
such programs are very clumsy in handling multi-dimensional arrays, and their expressions
of complex formulae are quite opaque. Thus, the supposed transparency of popular spread-
sheet programs may be somewhat illusory, and we feel that user-friendly Bayesian simulation
programs could contribute substantially to the �eld.
The hip replacement data and WinBUGS code to �t each of the models discussed here are

available from www.mrc-bsu.cam.ac.uk/bugs/examples.
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