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Part 12

Hands-on examples of
iImprecise simulation In

engineering (continued)

by Edoardo Patelli and Jonathan Sadeghi
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Metamodels

» If the full model is too computationally expensive to do many
simulations, or we have simulation results (or real data!)
already available we can replace the full model with an
approximation:

» Response Surfaces, Polyharmonic Spline, Neural Networks...

» Interval Predictor Models and Random Predictor Models.

» A good approximation should fit existing data well and
generalise well to new data
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Interval /Random Predictor Model

» IPMs and RPMs are new types of metamodel with favourable
properties for dealing with scarce/limited data.

» The variance in the data can be robustly estimated without
making unjustified assumptions (distribution of noise, for

example).
» The reliability of the metamodel can be bounded (more on this
later).
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Interval Predictor Models - Mathematics

» An IPM is defined as a function returning an interval for each
vector x € X

> |.e.

ly(x,P) ={y = M(x,p),p € P} (52)

» Crespo (2016) considers for example:

ly(x,P) = {y = pTo(x), p € P| (53)
> p is a member of the hyper-rectangular uncertainty set:

P={p:p<p<hp} (54)

> IPM
ly(x, P) = [y(x,p, p), ¥(x, P, p)] (55)
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How to train a type 1 [PM

> PR (qb(x) _2’¢(X)’) L pT <¢(X) +2¢(X)256)
y(x.p.p) =p" (MX) +2|¢(X)’) te (¢(X) 2¢(X)257)

» Can use polynomial or radial basis
» To find a good model attempt to minimise (expected value of):

5y (x,B.p) = (P —p) " |(x) (58)

with the constraints that all data points to be fitted lie within
these bounds and that the upper bound is greater than the
lower bound

» i.e. we solve a linear optimisation program

» These constraints give a type 1 IPM
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Outliers

» Two criterion are used to find outliers:

» We can find a CDF for the distance of each p from the centre
of the uncertainty set and then identify a fraction A\, of points
which prevent the interval being further minimised

» We can find the fraction \. of points with the furthest squared
distances from the LS fit

» Points satisfying both criterion can be disregarded as outliers -
then we can retrain with the new subset of points

» The analyst must make a sensible choice of A\, and A,
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Reliability

» For reliability parameter € and confidence parameter

satisfying
kt+d—1\ TN .
()T (Da-avi<s o)

=0

» the confidence and reliability parameters of the IPM are

bounded by
Probps[R>1—¢] > 1— 8. (60)
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Random Predictor Models

» A function returning a random variable for each vector x € X
Crespo (2015) considers for example:

Ry(x,P)={y =pTo(x).p: Fo(p),p€ P}  (61)

> it can be shown that:
p<p<p 0Sv<(p—p)o(p—p) —1<c<1(62)
C(v,c) =0 (63)

» o surface connects all outputs 7 standard deviations from

lo (X, o, —7,v) = [l(x, u, —7, v, ¢), l(x, u, 7, v, )] (64)

1y (5,1, €) = B(X)C (1, ) (x) (65)
py (%, 1) = " p(x) (66)
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Type 1 RPM - Optimisation program

>

I(x, 7.0, €) = pT$(x) + 7wy (x.vc)  (67)
» 1 is found by any means - least squares is commonly used.
o = argmin { E[v, (x, p)] :
v>0

[(Xiy by —Omax, Vs €) < yi < I(Xj, ty Omax, v, c) for i =1, ..., N}
(68)

> Omax IS chosen by analyst to decide number of standard
deviations from mean containing all data points.

» Reliability assessment from IPM applies to
le = [I(Xi, bty —OTmax, V, €), (X, 1ty Omax, V, €)] also.

» Similar outlier removal algorithm possible (distance from
mean, normalised by variance).

» We can also use Type 2 RPMs (chance constrained

formulation where constraint violation is allowed).
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Implementation

» Implemented a class to construct IPMs/RPMs in generalized
uncertainty quantification software OpenCOSSAN

» Training, Reliability evaluation, Outlier removal are all
performed automatically in OOP framework, with choice of
optimisers/basis type/additional constraints and more
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What is History Matching?

» A type of model calibration

» |f we have some real data and a model with some free
parameters which we wish to tune to reproduce the data

» Many methods
» Bayesian Inversion is popular

» See Tarantola, Inverse Problem Theory or Carter, J. N. "Using
Bayesian statistics to capture the effects of modelling errors in
inverse problems."

» Usually use least squares objective function between data and
model output - and a clever optimisation algorithm!
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Simple Example
» As in Carter (2004), the following function will be taken as a

black box
f(z) = (2% +0.12)* + 0, (69)
» Data provided is for z = 2 to z = 7 - challenge is to predict
z =10

» The 'model’ we have to match is g(q,z) = z9
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» As you can see | fitted an IPM to the data. New objective
function for simulations:

C(q) D | |
s =3 (T)ria-rp @)
i=0
» Then find feasible q:
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» Which enables us to make predictions...
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Imperial College Fault Model

» Model of a reservoir which has been producing oil for 36
months and has now started producing water (‘true’ data was
produced using a hetrogenous model with added noise (3%)).

» The challenge is to predict future production using a finite

element model (homogenous)

» Good and low quality sand permeabilities and fault throw are
unknown - to be determined by matching history data with the
true data.

» Database with ~ 160000 simulation results available online
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Simulations
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|C Fault

» Look for solutions with A(m) > 0.01
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Results

» Simulations close to minima of the objective function:
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An example for you to try

» Please refer to your handouts

» Your friend at the University requires help with some data
analysis.

» Use the programming language you prefer. | have provided
instructions on a numerical method. | have prepared a solution
in Matlab, and hence have provided some Matlab hints.

» Please give an interval for the value of y at x = 1 with a
probability bound.

| o
30 :
0
20 [, g
> o % OO@O(?
10 p®0 @ °
Q)%g%@oo gé(@oo
ol 360 00

369



Questions?

» Thank you.
» Jonathan Sadeghi
» J.C.Sadeghi@liverpool.ac.uk
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