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This document is a step-by-step guide on how sets of priors can be used
to better reflect prior-data conflict in the posterior. First we explain what
conjugate priors are along an example. Then we show how conjugate priors
can be constructed using a general result, and why they usually do not reflect
prior-data conflict. In the last part, we see how to use sets of conjugate priors
to deal with this problem.

1 Bayesian basics

Bayesian inference allows to combine information from data and information
extraneous to data (e.g., expert information) into a ‘complete picture’. Data
x is assumed to be generated from a certain parametric distribution family,
and information about unknown parameters is then expressed by a so-called
prior distribution, a distribution over the parameter(s) of the data generating
function.

As running example, let us consider an experiment with two possible
outcomes, success and failure. The number of successes s in a series of n
independent trials has then a Binomial distribution with parameters p and n,
where n is known but p ∈ [0, 1] is unknown. In short, S | p ∼ Binomial(n, p),
which means

f(s | p) = P (S = s | p) =

(
n

s

)
ps(1− p)n−s, s ∈ {0, 1, . . . , n} . (1)

Information about unknown parameters (here, p) is then expressed by a so-
called prior distribution, some distribution with some pdf, here f(p).
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The ‘complete picture’ is then the so-called posterior distribution, here
with pdf f(p | s), expressing the state of knowledge after having seen the
data. It encompasses information from the prior f(p) and data and is ob-
tained via Bayes’ Rule,

f(p | s) =
f(s | p)f(p)∫
f(s | p)f(p) dp

=
f(s | p)f(p)

f(s)
∝ f(s | p)f(p) , (2)

where f(s) is the so-called marginal distribution of the data S.
In general, the posterior distribution is hard to obtain, especially due to

the integral in the denominator. The posterior can be approximated with
numerical methods, like the Laplace approximation or simulation methods
like MCMC (Markov chain Monte Carlo). There is a large literature deal-
ing with computations of posteriors, and software like BUGS or JAGS has
been developed which simplifies the creation of a sampler to approximate a
posterior.

2 A conjugate prior

However, Bayesian inference not necessarily entails complex calculations and
simulation methods. With a clever choice of parametric family for the prior
distribution, the posterior distribution belongs to the same parametric family
as the prior, just with updated parameters. Such prior distributions are called
conjugate priors. Basically, with conjugate priors one trades flexibility for
tractability: The parametric family restricts the form of the prior pdf, but
with the advantage of much easier computations.1

The conjugate prior for the Binomial distribution is the Beta distribution,
which is usually parametrised with parameters α and β.

f(p | α, β) =
1

B(α, β)
pα−1 (1− p)β−1 , (3)

where B(·, ·) is the Beta function.2 In short, we write p ∼ Beta(α, β).
From now on, we will denote prior parameter values by an upper index (0),

and updated, posterior parameter values by an upper index (n). With this
notational convention, let S | p ∼ Binomial(n, p) and p ∼ Beta(α(0), β(0)).

1In fact, practical Bayesian inference was mostly restricted to conjugate priors before
the advent of MCMC.

2The Beta function is defined as B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt and gives the inverse

normalisation constant for the Beta distribution. It is related to the Gamma function
through B(a, b) = Γ(a)Γ(b)

Γ(a+b) . We will not need to work with Beta functions here.
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Then it holds that p | s ∼ Beta(α(n), β(n)), where α(n) and β(n) are updated,
posterior parameters, obtained as

α(n) = α(0) + s , β(n) = β(0) + n− s . (4)

From this we can see that α(0) and β(0) can be interpreted as pseudocounts,
forming a hypothetical sample with α(0) sucesses and β(0) failures.

Exercise 1. Confirm Eq. (4), i.e., show that, when S | p ∼ Binomial(n, p)
and p ∼ Beta(α(0), β(0)), the density of the posterior distribution for p is of
the form Eq. (3) but with updated parameters. (Hint: use the last expression
in Eq. (2) and consider for the posterior the terms related to p only.)

You have seen in the talk that we considered a different parametrisation
of the Beta distribution in terms of n(0) and y(0), defined as

n(0) = α(0) + β(0) , y(0) =
α(0)

α(0) + β(0)
, (5)

such that writing p ∼ Beta(n(0), y(0)) corresponds to

f(p | n(0), y(0)) =
pn

(0)y(0)−1 (1− p)n(0)(1−y(0))−1

B(n(0)y(0), n(0)(1− y(0)))
. (6)

In this parametrisation, the updated, posterior parameters are given by

n(n) = n(0) + n , y(n) =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· s
n
, (7)

and we write p | s ∼ Beta(n(n), y(n)).

Exercise 2. Confirm the equations for updating n(0) to n(n) and y(0) to y(n).
(Hint: Find expressions for α(0) and β(0) in terms of n(0) and y(0), then use
Eq. (4) and solve for n(n) and y(n).)

From the properties of the Beta distribution, it follows that y(0) = α(0)

α(0)+β(0) =

E[p] is the prior expectation for the success probability p, and that the
higher n(0), the more probability weight will be concentrated around y(0),

as Var(p) = y(0)(1−y(0))
n(0)+1

. From the interpretation of α and β and Eq. (5),

we see that n(0) can also be interpreted as a (total) pseudocount or prior
strength.

Exercise 3. Write a function dbetany(x,n,y, ...) that returns the value
of the Beta density function at x for parameters n(0) and y(0) instead of
shape1 (= α) and shape2 (= β) as in dbeta(x, shape1, shape2, ...).
Use your function to plot the Beta pdf for different values of n(0) and y(0) to
see how the pdf changes according to the parameter values.
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The formula for y(n) in Eq. (7) is not written in the most compact form
in order to emphasize that y(n), the posterior expectation of p, is a weighted
average of the prior expectation y(0) and s/n (the fraction of successes in the
data), with the weights n(0) and n, respectively. We see that n(0) plays the
same role for the prior mean y(0) as the sample size n for the observed mean
s/n, reinforcing the interpretation as pseudocount. Indeed, the higher n(0),
the higher the weight for y(0) in the weighted average calculation of y(n), so
n(0) gives the strength of the prior as compared to the sample size n.

Exercise 4. Give a ceteris paribus analysis for E[p | s] = y(n) and Var(p |
s) = y(n)(1−y(n))

n(n)+1
(i.e, discuss how E[p | x] and Var(p | s) behave) when

(i) n(0) → 0,

(ii) n(0) →∞, and

(iii) n→∞ when s/n = const.

and consider also the form of f(p | s) based on E[p | s] and Var(p | s).

3 Conjugate priors for canonical exponential

families

Fortunately it is not necessary to search or guess to find a conjugate prior to
a certain data distribution, as there is a general result on how to construct
conjugate priors when the sample distribution belongs to a so-called canon-
ical exponential family (e.g., Bernardo and Smith 2000, pp. 202 and 272f).
This result covers many sample distributions, like Normal and Multinomial
models, Poisson models, or Exponential and Gamma models, and gives a
common structure to all conjugate priors constructed in this way.

For the construction, we will consider distributions of i.i.d. samples x =
(x1, . . . , xn) of size n directly.3 With the Binomial distribution, we did so
indirectly only: The Binomial(n, p) distribution for S results from n inde-
pendent trials with success probability p each. Encoding success as xi = 1
and failure as xi = 0 and collecting the n results in a vector x, we get
s =

∑n
i=1 xi. It turns out that the sample distribution depends on x only

3It would be possible, and indeed is often done in the literature, to consider a single
observation x in Eq. (9) only, as the conjugacy property does not depend on the sample
size. However, we find our version with n-dimensional i.i.d. sample x more appropriate.
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through s:

f(x | p) =
n∏
i=1

pxi(1− p)1−xi

= p
∑n

i=1 xi(1− p)
∑n

i=1(1−xi) = ps(1− p)n−s , (8)

so s summarizes the sample x without changing the pmf. Such a summary
function of a sample x is called a sufficient statistic of x.4

The construction has two steps. We first rewrite the sample distribution
in a specific form to identify certain ingredients, and then construct the con-
jugate prior based on these ingredients. We will cover sampling distributions
with only one parameter here; you can find the formulation for exponential
family distributions with more than one parameter in Appendix B.

For step 1, a sample distribution is said to belong to the canonical expo-
nential family if its density or mass function satisfies the decomposition

f(x | θ) = a(x) exp
{
ψ · τ(x)− nb(ψ)

}
. (9)

The ingredients of this decomposition are:

• ψ ∈ Ψ ⊂ R, a transformation of the distribution parameter θ ∈ Θ,
called the natural parameter of the canonical exponential family;

• τ(x), a sufficient statistic of the sample x. It holds that τ(x) =∑n
i=1 τ

∗(xi), where τ ∗(xi) ∈ T ⊂ R;

• b(ψ), some function of ψ (or, in turn, of θ);

• a(x), some function of x.

Let us do the decomposition for the Binomial distribution before we go to
the second step. The Binomial pmf from Eq. (1) can be rewritten as follows:

f(s | p) =

(
n

s

)
ps(1− p)n−s (10)

=

(
n

s

)
exp

{
log
( p

1− p

)
s− n

(
− log(1− p)

)}
. (11)

We have thus ψ = log(p/(1 − p)), τ(x) = s, b(ψ) = − log(1 − p), and
a(x) =

(
n
s

)
. The function log(p/(1 − p)) is known as the logit, denoted by

logit(p).

4There are
(
n
s

)
0/1 vectors x with s 1’s, leading to the Binomial pmf Eq. (1). For a

Bayesian analysis, such factors that do not depend on the parameter of interest do not
matter. This is one of the central differences between Bayesian and Frequentist methods.
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In step 2, a conjugate prior on ψ can be constructed from the ingredients
identified in step 1 by

p(ψ | n(0), y(0)) dψ ∝ exp
{
n(0)
[
y(0) · ψ − b(ψ)

]}
dψ , (12)

where n(0) > 0 and y(0) ∈ R are the parameters by which a certain prior
can be specified.5 We will refer to priors of the form Eq. (12) as canonically
constructed priors. Note that Eq. (12) provides a distribution over the natural
parameter ψ and not over the usual parameter θ. When ψ 6= θ it can be useful
to transform the density over ψ to a density over θ.

Continuing our example, it turn out that the Beta(n(0), y(0)) is the canon-
ically constructed prior to the Binomial distribution. Constructing the prior
from the ingredients ψ = log(p/(1− p)), τ(x) = s, and b(ψ) = − log(1− p)
leads to

f
(
ψ | n(0), y(0)

)
dψ ∝ exp

{
n(0)
[
y(0) log

( p

1− p

)
+ log(1− p)

]}
dψ . (13)

To transform this density over ψ to a density over p, we have to multiply it
with∣∣∣∣ dψ

dp

∣∣∣∣ =

∣∣∣∣ d

dp
log
( p

1− p

)∣∣∣∣ =

∣∣∣∣1− pp
(

(1− p) + p

(1− p)2

)∣∣∣∣ =
1

p(1− p)
, (14)

and so we get

f(p | n(0), y(0)) dp (15)

= f(ψ | n(0), y(0))

∣∣∣∣ dψ

dp

∣∣∣∣ dp (16)

∝ exp
{
n(0)y(0) log(p) +

(
n(0) − n(0)y(0) log(1− p)

)} 1

p(1− p)
dp (17)

= pn
(0)y(0)−1(1− p)n(0)(1−y(0))−1 dp . (18)

This is indeed the Beta distribution from Eq. (6).
For all canonically constructed priors, the prior parameters n(0) and y(0)

are updated to their posterior values n(n) and y(n) by

n(n) = n(0) + n , y(n) =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· τ(x)

n
, (19)

5Actually, the domain of y(0) is Y, defined as the interior of the convex hull of T ; these
intricacies do not matter in this exercise however.
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and the posterior can be written as

p(ψ | x, n(0), y(0)) = p(ψ | n(n), y(n))

∝ exp
{
n(n)

[
〈y(n), ψ〉 − b(ψ)

]}
dψ . (20)

Usually, y(0) and y(n) can be seen as the parameter describing the main
characteristics of the prior and the posterior, and thus we will call them
main prior and main posterior parameter, respectively.6 y(0) can also be
understood as a prior guess for the mean sufficient statistic τ̃(x) := τ(x)/n.
For all constructed priors, y(n) is a weighted average of this prior guess y(0)

and the sample ‘mean’ τ̃(x), with weights n(0) and n, respectively; therefore,
n(0) can be seen as “prior strength” or “pseudocount”, reflecting the weight
one gives to the prior as compared to the sample size n.

Exercise 5. Confirm Eq. (19), the equations for updating n(0) to n(n) and
y(0) to y(n), for one-parametric exponential family distributions. (Hint: Use
the last expression in Eq. (2) and consider only the terms related to ψ for the
posterior.)

Exercise 6. Construct the canonical conjugate prior to a sample distribu-
tion of your choice. This works only for distributions forming a canonical
exponential family! (As a counterexample, the Weibull distribution with un-
known shape parameter does not form a canonical exponential family.) You
can try, e.g., the Normal (Gaussian) distribution with fixed variance σ2

0 or,
if you want to avoid a density transformation, the Normal distribution with
fixed variance 1.7

4 Prior-data conflict

As discussed in the talk, the weighted average structure for y(n) in Eq. (19)
is intuitive, but with it comes the problematic behaviour in case of prior-
data conflict. In most parametric models, the spread of the posterior does
not systematically depend on how far the prior guess y(0) diverges from the
mean sufficient statistic τ̃(x). Then, conflict between prior assumptions and
information from data is just averaged out, and the posterior gives a false
impression of certainty, being more pointed around y(n) than the prior in
spite of the conflict.

6Remember, for the Beta distribution, y(0) is the expected success probability p.
7You can find the solution for X

i.i.d∼ N(µ, σ2
0) in Appendix A. Furthermore, Table 1

in Quaeghebeur and Cooman (2005) gives ψ, τ∗(xi), a(x) and b(ψ) for the most common
sample distributions that form a canonical exponential family.
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Exercise 7. Write the functions nn(n0, n) and yn(n0, y0, s, n) imple-
menting Eq. (7), the update step for the Beta prior. Plot prior and posterior
densities for different choices of n0, y0, s, n to see the effect (or the lack
of it) of prior-data conflict on the posterior, using your code from Exercise 3.
E.g, take n0 = 8, y0 = 0.75 to fix a prior, and compare the posterior for s

= 12, n = 16 and for s = 0, n = 16.

5 Sets of conjugate priors

Modelling prior information with sets of conjugate priors retains the tractabil-
ity of conjugate analysis and ensures prior-data conflict sensitivity. It also
allows to express prior knowledge more cautiously, or partial prior knowl-
edge, and generally makes it possible to express the precision of probability
statements encoded in the prior. The resulting imprecise/interval probability
models can be seen as systematic sensitivity analysis, or as a kind of robust
Bayesian method.

The central idea is to consider sets Π(0) of canonical parameters (n(0), y(0))
which create corresponding sets of priors M(0) via

M(0) =
{
f(ψ | n(0), y(0)) : (n(0), y(0)) ∈ Π(0)

}
. (21)

Quaeghebeur and Cooman (2005) suggested sets Π(0) = n(0) × [y(0), y(0)],
but Walter and Augustin (2009) showed that the resulting sets of priors
are still insensitive to prior-data conflict, and proposed instead to use sets
Π(0) = [n(0), n(0)]× [y(0), y(0)].8 Sets of priors generated by Π(0) = [n(0), n(0)]×
[y(0), y(0)] were called ‘generalized iLUCK-models’, and were implemented in
an R package luck (Walter and Krautenbacher 2013).

Exercise 8. You can install the luck package by downloading http://

download.r-forge.r-project.org/src/contrib/luck_0.9.tar.gz to your
working directory and then executing
install.packages("luck_0.9.tar.gz", repos = NULL, type = "source")

at the R prompt. If there is a problem, try installing the package TeachingDemos

first. After installation, load the package by executing library(luck).

(i) Use the functions LuckModel() and LuckModelData() to create a LuckModel

object corresponding to a parameter set Π(0) with an interval for both
n(0) and y(0), and that contains data such that τ(x)/n ∈ [y(0), y(0)].

Create a second LuckModel object with the same Π(0) but for which
τ(x)/n 6∈ [y(0), y(0)].

8A detailed discussion of different types of Π(0) is given in Walter (2013, §3.1).
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(ii) Plot the prior and posterior parameter sets Π(0) and Π(n) for both ob-
jects. You can find the help for the plot function for LuckModel ob-
jects via ?luck::plot. To plot Π(n), you need to supply the option
control=controlList(posterior=TRUE); to plot a second parameter
set in the same plot window, use add=TRUE. (You may need to set xlim

and ylim to make the plotting region large enough!)

(iii) Can you explain why the two Π(n)’s have different shapes, and how their
respective shapes come about? (Hint: Each point in the upper bound of
Π(n) is a weighted average of y(0) and τ(x)/n.)

(iv) Vary the length of the y(0) interval and the n(0) interval, vary the sample
statistic τ(x) and the sample size n. What is the effect on Π(n) for
each change? E.g., what happens to the range of y(n) values when the
y(0) interval gets larger? What happens to Π(0) when n → ∞ with
τ̃(x) = τ(x)/n constant?

A model with Π(0) = n(0)× [y(0), y(0)] corresponds to a vertical slice of the

plotted sets Π(0). The posterior parameter set is a vertical slice as well and
can be expressed as Π(n) = n(n) × [y(n), y(n)], where y(n) and y(n) result from

updating y(0) and y(0), respectively:

y(n) =
n(0)y(0) + τ(x)

n(0) + n
, y(n) =

n(0)y(0) + τ(x)

n(0) + n
. (22)

The posterior imprecision in the y dimension, denoted by ∆y(Π
(n)), is

∆y(Π
(n)) = y(n) − y(n) =

n(0)(y(0) − y(0))

n(0) + n
. (23)

Exercise 9. Do you see from Eq. (23) why models with Π(0) = n(0)×[y(0), y(0)]
are insensitive to prior-data conflict?

When Π(0) = [n(0), n(0)]× [y(0), y(0)], things are different, as you have seen.
Then, the lower and upper bound in the y dimension are given by

y(n) = inf
Π(n)

y(n) =


n(0)

n(0) + n
y(0) +

n

n(0) + n
τ̃(x) τ̃(x) ≥ y(0)

n(0)

n(0) + n
y(0) +

n

n(0) + n
τ̃(x) τ̃(x) < y(0)

, (24)

y(n) = sup
Π(n)

y(n) =


n(0)

n(0) + n
y(0) +

n

n(0) + n
τ̃(x) τ̃(x) ≤ y(0)

n(0)

n(0) + n
y(0) +

n

n(0) + n
τ̃(x) τ̃(x) > y(0)

. (25)
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Exercise 10. Which cases in Eq. (24) and Eq. (25) correspond to prior-data
conflict? What do they have in common, and how does this link to what you
saw in the Π(n) plots?

The posterior imprecision in the y dimension can be expressed by

∆y(Π
(n)) =

n(0)(y(0) − y(0))

n(0) + n

+ inf
y(0)∈[y(0),y(0)]

|τ̃(x)− y(0)| n(n(0) − n(0))

(n(0) + n)(n(0) + n)
. (26)

Note that the expression infy(0)∈[y(0),y(0)] |τ̃(x)−y(0)| = 0 when τ̃(x) ∈ [y(0), y(0)],

otherwise it gives the distance of τ̃(x) to the y(0) interval.

Exercise 11. How does the shape of Π(n) reflect Eq. (26) when τ̃(x) ∈
[y(0), y(0)]?

6 Sets of conjugate priors for scaled normal

data

The prior for the scaled normal distribution, a normal distribution with
variance 1, is implemented in the luck package. For X ∼ N(µ, 1), the
canonically constructed prior is µ ∼ N(y(0), 1/n(0)); the sufficient statistic
is τ(x) =

∑n
i=1 xi. For a derivation, see Appendix A below and set σ2

0 = 1.

Exercise 12. Use the functions ScaledNormalLuckModel() and ScaledNormalData()

to create a LuckModel for scaled normal data. Plot the set of prior and pos-
terior cdfs using cdfplot(), and observe how this changes depending on
τ̃(x) = x̄ being inside our outside the y(0) interval. How are the ranges for
n(0) and y(0) reflected in the set of cdfs?

The Bayesian equivalent to frequentist confidence intervals are credible
intervals. A 95% posterior credible interval is an interval for θ covering a
probability weight of γ = 95% according to the posterior over θ. It can be
obtained, e.g., as the interval from the 2.5% quantile to the 97.5% quantile
of the posterior. Highest density intervals are credible intervals that consist
of the θ values with the highest cdf values. Often denoted as HPD (for
highest posterior density) intervals, they are more difficult to obtain than
quantile-based credible intervals, but give the shortest interval among all
level γ intervals when the distribution is unimodal. For sets of priors, we can
consider the union of all highest density intervals corresponding to all priors
in the set, and likewise for the set of posteriors.
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Exercise 13. Calculate prior and posterior union of highest density intervals
using unionHdi() for a ScaledNormalLuckModel. Compare its length when
prior-data conflict is or is not present.

Experienced R programmers can work to extend the luck package (I’m
very happy to help):

Exercise 14. Write your own subclasses to implement the conjugate prior
to a sample distribution of your choice. (You may have derived a conjugate
prior in Exercise 6 already.) Take the code files 01-01_ScaledNormalData.r
and 01-02_ScaledNormal.r as a blueprint. You can find these files in the R

folder of the package sources. The constructor functions can be much simpler
than those in the files which are written to accommodate all kinds of inputs.

A The Normal distribution with known vari-

ance as canonically constructed conjugate

prior

Consider the normal or Gaussian distribution with known variance σ2
0. The

pdf for n independent samples x = (x1, . . . , xn) can be written as

f(x | µ) =
n∏
i=1

1√
2πσ2

0

exp
{
− 1

2σ2
0

(xi − µ)2
}

= (2πσ2
0)−

n
2 exp

{
− 1

2σ2
0

n∑
i=1

(xi − µ)2
}

(27)

= (2πσ2
0)−

n
2 exp

{
− 1

2σ2
0

[ n∑
i=1

x2
i − 2µ

n∑
i=1

xi + nµ2
]}

= (2πσ2
0)−

n
2 exp

{
− 1

2σ2
0

n∑
i=1

x2
i +

µ

σ2
0

n∑
i=1

xi −
nµ2

2σ2
0

}
. (28)

So we have here ψ = µ
σ2
0
, b(ψ) = µ2

2σ2
0
, and τ(x) =

∑n
i=1 xi. From these

ingredients, a conjugate prior can be constructed with (12), leading to

p
( µ
σ2

0

| n(0), y(0)
)

d
µ

σ2
0

∝ exp
{
n(0)
(
y(0) µ

σ2
0

− µ2

2σ2
0

)}
d
µ

σ2
0

. (29)

This prior, transformed to the parameter of interest µ and with the square
completed,

p(µ | n(0), y(0)) dµ ∝ 1

σ2
0

exp
{
− n(0)

2σ2
0

(
− 2µy(0) + µ2

)}
dµ
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∝ exp
{
− n(0)

2σ2
0

(µ− y(0))2
}

dµ , (30)

is a normal distribution with mean y(0) and variance
σ2
0

n(0) , i.e. µ ∼ N(y(0),
σ2
0

n(0) ).
With (19), the parameters for the posterior distribution are

y(n) = E[µ | n(n), y(n)] =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· x̄ (31)

σ2
0

n(n)
= Var(µ | n(n), y(n)) =

σ2
0

n(0) + n
. (32)

The posterior expectation of µ thus is a weighted average of the prior expec-
tation y(0) and the sample mean x̄, with weights n(0) and n, respectively. The
effect of the update step on the variance is that it decreases by the factor
n(0)/(n(0) + n), for any sample of size n.

B Canonical exponential families with more

than one parameter

A sample distribution is said to belong to the q-parametric canonical expo-
nential family if its density or mass function satisfies the decomposition

f(x | θ) = a(x) exp
{
〈ψ, τ(x)〉 − nb(ψ)

}
. (33)

The ingredients of the decomposition are:

• ψ ∈ Ψ ⊂ Rq, a transformation of the (vectorial) parameter θ ∈ Θ,
called the natural parameter of the canonical exponential family;

• b(ψ), a scalar function of ψ (or, in turn, of θ);

• a(x), a scalar function of x;

• τ(x), a sufficient statistic of the sample x which has dimension q (the
same as ψ). It holds that τ(x) =

∑n
i=1 τ

∗(xi), where τ ∗(xi) ∈ T ⊂ Rq.

• 〈·, ·〉 denotes the scalar product, i.e., for u, v ∈ Rq is 〈u, v〉 =
∑q

j=1 uj ·vj.

From these ingredients, a conjugate prior on ψ can be constructed as

p(ψ | n(0), y(0)) dψ ∝ exp
{
n(0)
[
〈y(0), ψ〉 − b(ψ)

]}
dψ , (34)
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where n(0) > 0 and y(0) ∈ Y are the parameters by which a certain prior can
be specified. Y , the domain of y(0), is defined as the interior of the convex
hull of T . We refer to priors of the form in Eq. (34) as canonically constructed
priors. Note that Eq. (34) provides a distribution over the natural parameter
ψ and not over the usual parameter θ. When ψ 6= θ it can be useful to
transform the density over ψ to a density over θ.

The prior parameters n(0) and y
(0)
j , j = 1, . . . , q, are updated to their

posterior values n(n) and y
(n)
j by

n(n) = n(0) + n , y
(n)
j =

n(0)

n(0) + n
· y(0)

j +
n

n(0) + n
· τ(x)j

n
, (35)

and the posterior can be written as

p(ψ | x, n(0), y(0)) = p(ψ | n(n), y(n))

∝ exp
{
n(n)

[
〈y(n), ψ〉 − b(ψ)

]}
dψ . (36)

y(0) and y(n) can be seen as the parameter vectors describing the main char-
acteristics of the prior and the posterior, and thus we will call them main
prior and main posterior parameter, respectively. y(0) can also be under-
stood as a prior guess for the mean sufficient statistic τ̃(x) := τ(x)/n.9 y

(n)
j

is a weighted average of this prior guess y
(0)
j and the sample ‘mean’ τ̃(x)j,

with weights n(0) and n, respectively. n(0) can be seen as “prior strength” or
“pseudocount”, reflecting the weight one gives to the prior as compared to
the sample size n.

References

Bernardo, J. and A. Smith (2000). Bayesian Theory. Chichester: Wiley.
Quaeghebeur, E. and G. de Cooman (2005). “Imprecise probability models

for inference in exponential families”. In: ISIPTA ’05. Proceedings of
the Fourth International Symposium on Imprecise Probabilities and Their
Applications. Ed. by F. Cozman, R. Nau, and T. Seidenfeld. Manno:
SIPTA, pp. 287–296. url: http://leo.ugr.es/sipta/isipta05/
proceedings/papers/s019.pdf.

Walter, G. (2013). “Generalized Bayesian Inference under Prior-Data Con-
flict”. PhD thesis. Department of Statistics, LMU Munich. url: http:
//edoc.ub.uni-muenchen.de/17059/.

9This is because E[τ̃(x) | ψ] = ∇b(ψ), where in turn E[∇b(ψ) | n(0), y(0)] = y(0), see
Bernardo and Smith (2000, Prop. 5.7, p. 275).

13

http://leo.ugr.es/sipta/isipta05/proceedings/papers/s019.pdf
http://leo.ugr.es/sipta/isipta05/proceedings/papers/s019.pdf
http://edoc.ub.uni-muenchen.de/17059/
http://edoc.ub.uni-muenchen.de/17059/


Walter, G. and N. Krautenbacher (2013). luck: R package for Generalized
iLUCK-models. url: http://luck.r-forge.r-project.org/.

Walter, G. and T. Augustin (2009). “Imprecision and Prior-data Conflict in
Generalized Bayesian Inference”. In: Journal of Statistical Theory and
Practice 3, pp. 255–271. doi: 10.1080/15598608.2009.10411924.

14

http://luck.r-forge.r-project.org/
http://dx.doi.org/10.1080/15598608.2009.10411924

	Bayesian basics
	A conjugate prior
	Conjugate priors for canonical exponential families
	Prior-data conflict
	Sets of conjugate priors
	Sets of conjugate priors for scaled normal data
	The Normal distribution with known variance as canonically constructed conjugate prior
	Canonical exponential families with more than one parameter

